LAHORE, GUJRANWALA, RAWALPINDI, FAISALABAD, SARGODHA, MULTAN, D.G.KHAN, BAHAWALPUR AND SAHIWAL (SOLVED PAPERS) 2014-2025 1st & 2nd Group

Complete Solution to exercise questions

Solved Past Papers (2014 to 2025) of all the Boards of Punjab, Lahore, Gujranwala, Rawalpindi, Faisalabad, Sargodha, Multan, D.G.Khan, Bahawalpur and Sahiwal (Group I & II)

BASED ON BLOOM'S TAXONOMY

AL-RAZI 100 Formula Ensures 100% Success in Board Exams Up-to-Date Papers For exampreparation 2026 DIVCICC 10

Salient Features

- ✓ Learning Material
- ✓ Solved Board Papers
- **✓** 100/100 Formula

Al- Razi Test Book

- ✓ Period-wise Class Tests
- ✓ Chapter-wise Tests
- ✓ Half & Full Syllabus Assessment Tests

Table of Contents

Section		Learning Material (SECTION - I)	Page #			
No.		Boards' Questions on Textbook	. age "			
140.	Chapter-10	Simple Harmonic Motion and Waves	3			
	Chapter-11	Sound	14			
1	Chapter-12	Geometrical Optics	24			
Chapter	Chapter-13	Electrostatics	39			
Wise	Chapter-14 Current Electricity					
Learning	Chapter-15	E lectromagnetism	63			
Ma <mark>t</mark> erial	Chapter-16	Basic Electronics	70			
	Chapter-17	Information and Communication Technology				
	Chapter-18	Atomic and Nuclear Physics	83			
2	Papers of A	All Boards of Punjab 2024	93			
3	Solution to	Board Papers 2024	129			
4	Papers of A	All Boards of Punjab 2025	131			
5	Solution to Board Papers 2025					
6	AL-Razi 100 Formula Based on Most Frequently Asked					
	Questions	Questions in Board Exams				
7	Important I	Practicals	208			

Including AL-RAZI Free Assessment Test Book

Now get five years past papers just at the cost of photocopy

Written & Composed by AL-RAZI Academic Development Unit (ADU)

Unit 10: Simple Harmonic Motion and Waves

Boards' Topic Wise Multiple Choice Questions Classified Precisely According to the New Examination Techniques of Education Department

 			pplication, Analytical &	
	10.	1 Simple Har	monic Motion (SHM)
1.	The formula of Ho	oke's law is:		[SGD-I-23] (Knowledge)
	A F = kx	B F = - kx	$C k = \frac{x}{F}$	D x = - Fk
2.	The unit of spring			25] [RWP-I-23] (Knowledge)
	$A \stackrel{N}{/}_{m^2}$	$B_{m}^{N/m}$	$C \frac{N}{C}$	$D^{m^2}N$
3.	The equation to fir	nd the time period of	a mass attached to a s	
	<u> </u>	<u> </u>		ı,guj-ı/ıl-18] (Knowledge)
	A $T = 2\pi \sqrt{\frac{\epsilon}{g}}$	B $T = 2\pi \sqrt{\frac{9}{\ell}}$	$C T = 2\pi \sqrt{\frac{m}{k}}$	D $T = 2\pi \sqrt{\frac{\kappa}{m}}$
4.	Time period formu	ıla for <mark>s</mark> imple pendulu	um:	[FSD-II-23] (Know <mark>l</mark> edge)
	$A T = 2\pi \sqrt{\frac{g}{\ell}}$	B $T = 2\pi \sqrt{\frac{\ell}{g}}$	$T = 2\pi \sqrt{\frac{m}{k}}$	D $T = 2\pi \sqrt{\frac{k}{m}}$
5.	When did Christia	n Hu <mark>ygens invent the</mark>	pendulum clock?	(Knowledg <mark>e</mark>)
	A 1656	B 1756	C 1856	[SGD-I,MTN-I-23] D 1956
6.			f a vibrating body is ca	
				[RWP-II-23] (Knowledge)
	A Frequency	· ·	C Vibration	D Displacement
7.	If the time period i	s given then frequen	cy is calculated as:	[FSD-II-23] (Knowledge)
	A $f = 1/T$	B <i>f</i> = 2/T	C f = 3/T	D $f = 4/T$
8.		quency and time peri		(Knowledge)
	A 4	B 3	C 1	D 2
9.	The time period of	a simple pendulum o	of length one meter is:	urum (Understanding)
	A 1.99s	B 2.11s	C 1.89s	мти-II) (Understa nding) D 1.88s
10.			bled then its time perio	
			[SGD-I-24] [GUJ-II,M	т <mark>и-і,sgd-іі] (Application</mark>)
	A √2 T	$B \frac{T}{\sqrt{2}}$	C 2T	$D \frac{T}{2}$
	A V-	D √2	C 21	7
		10.2 Damp	ed Oscillations	
11.		vehicle are examples		GD-I,MTN-II] (Application)
	A Simple harmonic		B Vibratory motion	1
12.	C Damped motion The shock absorve		D Linear motion ons and converts their	energy into of coil.
		-		[FSD-I_22] (Application)
	A K.E	B P.E	C Heat energy	D Sound energy

Al	-Razi	Up to	Date	e Pap	ers 🛊	1				9	4					3	Ph	ysi	cs	- 10	0
							1	0.3	3 V	Na	ve l	Mot	ioi	า							
	X-ra	nfrar	ed aves	are:			X-ray Com		ssion	nal	C	P-II,FS	trom	agne	etic	[ОМ	echa	nica (Ap p	l licat	ion)
15.					ctric		mag												ngle	of:	
	Α 1	100°				В	90°				С	45°				[D 18	30°	(SGD-	II-23)
					10	.4	Тур	es	01	f M	ecl	nan	ica	ıl V	Vav	es/					
					10	.5	Wa	ve	s a	as (car	ries	of	E	ner	gy					
17.	An a	n gas exan Soun	ses iple d wa	of Ic	ongit	B udir B	ve fas In liq nal wa Light s equ	uids ave: wa	s is: ve		C	Both [BWF Rad	io w	5] [F \$ ave	3 SD-II -] 24] [L]	D In . HR-I D W	ater	ls (App wav	licat e	ion)
	A	Γime				В	Freq	uen	су		C	Spe	ed) Di	istan	се		9,
	A r	ema	ins tl ake	he sa pro d	ame luce	B s wa	beconves t	me: : hro	s zer	ro the	crus	Increst of t	ease : he e	es earth	ı in t J-II,S	LH]] he fo GD-I,I	R-I-2 D DO Drm FSD-	3] (C ecrea	ases (nov	vled	
21.							Sour e, sp					_	IL Wa	aves					(Knc	wle	dge)
	A	,	•				v = d					: v =	$\frac{t^2}{d}$					$= \frac{d^2}{t}$	2		
22.							a wa Time					Amp	olitud	de		[) Di	istan		alyt	ical)
							1	0.	6	Rip	ple	Ta	ınk								
23.	The	ben	ding	of v	wave	es ar	ound	_	_	eles	or sh	arp e	edge	es is					_		
	A F	Refle	ction			В	Refra	actic	on			i,sgb : Wav						ı] (K iffrac		vlec	ige)
24.		ch o ts sp		e foll	owii	[F	u anti SD-II-2 Its di	24] [I	_HR-I ion	II-24]	[BWF	P-II-25 Its fr] [DG	K-I-2	5] [LI	HR-I,I	I-25]	_	ders		ling)
1	ΙD	2.	D	3.		4.	Б	5.	_	SW6	ers I	(ey	^	8.		9.	^	10.	^	11.	
1. 12.	В	13.	В	14.	C D	15.	B B	16.	A D	17.	A	18.	A D	19.	C D	20.	A	21.	A	22.	С
23.	D	24.	С							·	-										
	Вс			Ne	ew Ex	xami	N END natio dersto	n T	echi	niqu	es o	f Edu	cati	on D	epai	rtme	nt	Ū	to th	ne	
				10	0.1	S	imp	le	На	rm	on	ic N	/lot	ior) (S	H	/ 1)				

1. Explain Hooke's law. [DGK-II-25] [FSD-I-24] [FSD-II,SWL-II,SGD-II,MTN-II] (Knowledge)

Ans: If the spring is stretched or compressed through a small displacement x from its mean position, it exerts a force F on the mass. According to Hooke's law this force is directly

proportional to the change in length x of the spring i.e.

$$F \propto -x$$

 $F = -kx$

2. Write two characteristics of simple harmonic motion. [SWL-I-25] [GUJ-II-25] [LHR-I-25] (Analytical)

Ans: (i) In simple harmonic motion a body always moves about a mean position.

- (ii) Its acceleration is always act towards the mean position.
- 3. Define restoring force. Or define the restoring force in a mass-spring system.

[GUJ-II-24] [RWP-II-25] [GUJ-I-25] [RWP-II,MTN-II,RWP-I] (Knowledge)

Ans: Restoring force: The force which always pushes or pulls the object performing oscillatory motion towards or away from its mean position is called restoring force.

$$F \propto -x$$

The magnitude of the restoring force decreases as the distance from the mean position decreases and becomes zero at the mean position.

4. Define simple pendulum and write its time period formula.

(Knowledge)
[LHR-II,DGK-I,RWP-I/II]

Ans: Simple Pendulum: A simple pendulum consists of a small ball (Bob) suspended from a frictionless support by a fine but strong thread. If the length of the simple pendulum is ℓ , the equation for the time period of the simple pendulum will be:

$$T = 2\pi \sqrt{\frac{\ell}{g}}$$

5. Define simple harmonic motion. [RWP-II-25] [FSD-II-25] [MTN-I-25] [DGK-I-25] [LHR-II-24] (Knowledge)

Ans: In simple harmonic motion, the net force is directly proportional to the displacement from the mean position and its direction is always towards the mean position.

6. Define vibration.

[BWP-I-25] [SWL-I-24] (Understanding)

Ans: One complete round trip of a vibrating body about its mean position is called one vibration.

7. What is the reciprocal of time? Define it.

[GUJ-II,FSD-II,SWL-I] (Knowledge)

Ans: The reciprocal of time period is frequency. It is denoted by f.

$$f = \frac{1}{T}$$

Frequency: The number of vibration or cycles of a vibrating body in one second is called its frequency.

8. What is the relationship between frequency and time period?

(Analytical)

[BWP-I-24]

Ans: Frequency and time period are inversely proportional to each other i.e. if one increases then the other decreases or if one decreases then the other increases.

$$f = \frac{1}{T}$$

9. Define amplitude.

[DGK-I-25] [MTN-I-24] (Knowledge)

Ans:The maximum displacement of a vibrating body on either side from its mean position is called its amplitude.

10. If the time period of a simple pendulum is 1.99 seconds, find its frequency.

[FSD-II,SWL-II,SGD-II] (Application)

Solution:

T = 1.99 s

$$f = ?$$

 $f = \frac{1}{T} = \frac{1}{1.99} = 0.5 \text{ Hz}$

11. If 100 waves pass through a point of a medium in 20 seconds, what is the frequency of the wave? [LHR-I-24] (Application)

Ans. Number of waves = n = 100

Time for 100 waves pass = t = 20 sec

frequncy = f = ?

Frequncy =
$$\frac{\text{Number of waves}}{\text{Time}} = \frac{n}{t} = \frac{100}{20} = 5 \text{ Hz}$$

12. What is meant by wavelength? Write its unit.

(Knowledge)

Ans. Wavelength is the horizontal distance between two consecutive compression and rarefaction. The unit of wavelength its metre (m).

13. Find the time period of simple pendulum of 1m long on moon if $g_m = g_e/6$. (Application) Ans. $\ell = 1m$

$$\begin{split} \ell &= 1 m \\ g_e &= 10 m s^{-2} \\ g_m &= \frac{g_e}{6} = \frac{10}{6} m s^{-2} = 1.67 m s^{-2} \\ T &= ? \\ T &= 2 \pi \sqrt{\frac{\ell}{g_m}} \\ T &= 2 \times 3.14 \times \sqrt{\frac{1}{1.67}} \\ T &= 4.9 \, \text{sec} \end{split}$$

14. What are the necessary condition for a body to execute simple harmonic motion?

(Understanding)

Ans.Basic conditions to execute SHM: Basic conditions to execute simple harmonic motion are as under: (i) There must be an elastic restoring force acting on the system.

- (ii) The system must have inertia.
- (iii) The acceleration of the system should be directly proportional to its displacement and is always directed to mean position i.e. a αx
- 15. If f = 2Hz and $\lambda = 0.2m$ then calculate the speed and time period? (Application) Ans.

f = 2Hz $\lambda = 0.2m$ V = ? T = ? $V = f \lambda = 2(0.2) = 0.4 \text{ ms}^{-1}$ $T = \frac{1}{f} = \frac{1}{2} = 0.5 \text{ sec}$

10.2 Damped Oscillations

16. Define damped oscillations. Give an example from daily life.

(Application)

[LHR-II-25] [BWP-I-25] [FSD-II-24]

Ans: Damped Oscillations: Oscillations of a system in the presence of a resistive force are called damped oscillations.

Example: Shock absorbers in automobiles are a practical example of damped motion.

- 17. How damping progressively reduces the amplitude of oscillation? [MTN-II-24] [LHR-II-24]
- Ans. Vibratory motion of ideal systems in the absence of any friction or resistance continues indefinitely under the action of a restoring force. Practically, in all system the force of friction retards the motion, so the system do not oscillate indefinitely. The friction reduced the mechanical energy of the system as time passes, and the motion is said to be damped. This damping progressively reduced the amplitude of motion.
- 18. How shock absorber damp vibration?

[BWP-II-24]

Ans. A shock absorber consists of a piston moving through liquid such as oil. The upper part of the shock absorber is firmly attached to the body of the car. When the car travel over a bump on the road, the car may vibrate violently. The shock absorbers damp these vibrations and convert their energy into heat energy of the oil.

10.3 Wave Motion

19. How can you define a wave?

[SGD-I/II,GUJ-II,MTN-I,DGK-I,SWL-II] (Understanding)

Ans: A wave is a disturbance in the medium which causes the particles of the medium to undergo vibratory motion about their mean position in equal intervals of time.

20. Define mechanical waves and name its types.

[BWP-II-25] (Knowledge)

Ans: Mechanical Waves: Waves which require any medium for their propagation are called mechanical waves.

Examples of mechanical waves are water waves, sound waves and waves produced on the strings and springs.

Types of mechanical waves:

(i) Longitudinal waves (ii) Transverse waves

21. Define electromagnetic waves.

(Knowledge)

[GUJ-I-25] [SWL-II-24]

Ans: Electromagnetic Waves: "Such waves which do not require a medium for their propagation are called electromagnetic waves."

Examples of electromagnetic waves: (i) Radio waves

(ii) Television waves

(iii) X-rays and heat

(iv) Light waves etc.

10.4 Types of Mechanical Waves

22. What is called compression?

[DGK-II,SGD-I,MTN-II,RWP-I] (Knowledge)

Ans: Such a wave consists of regions called compressions, where the loops of the spring are close together. In the regions of compression, particles of the medium are closer together.

23. Write the difference between longitudinal and transverse waves.

[MTN-II-24] [MTN-I-25] (Understanding)

Ans:

Longitudinal waves	Transverse waves			
In longitudinal waves the particles of the	In case of transverse waves, the vibratory			
medium move back and forth along the	motion of particles of the medium is			
direction of propagation of wave.	perpendicular to the direction of			
Examples: sound waves, spring waves				
etc.	Examples: waves generated on water			
	surface, waves generated in rope etc.			

24. What is wavelength?

(Knowledge)

Ans: The distance between two consecutive crests or troughs is called wavelength.

10.5 Waves as carries of Energy

25. Prove: $v = f \lambda$

[BWP-II-25] (Understanding)

Ans: We know that:

Velocity =
$$\frac{\text{Distance}}{\text{Time}}$$

$$V = \frac{d}{t}$$

If the wave spends a time equal to the time period T in its motion from one place to another, the distance traveled by the wave is equal to the wavelength (λ) so:

$$v = \frac{\lambda}{T}$$

$$v = \frac{1}{T} \times \lambda$$

$$v = f \times \lambda$$

$$(\therefore f = \frac{1}{T})$$

So proved: $v = f \lambda$

or

26. Find the speed of waves when the frequency is 2 Hz and the wavelength is 0.1 m. [FSD-I,DGK-II,BWP-II,SGD-I] (Application)

Solution: f = 2Hz $\lambda = 0.1 \text{ m}$ V = ? $v = f \lambda$

We know that:

 $v = 2 \times 0.1 = 0.2 \text{ ms}^{-1}$

Al-Ra	zi Up to Date Papers		8		*	Physics	- 10
	wave moving on a		-			_	
	peed of the wave. On:Frequency $= f = $		ITN-II	-24] [MTN-I-24] [SV	VL-I-25]	[SGD-I-25] (A pp	lication)
	Wavelength = λ =						
	Speed v = ?						
	Formula: $V = f \lambda$						
	v = (4) (0.4)						
Ans:	$v = 1.6 \text{ms}^{-1}$						
_	rite an activity tha	it shows that wat	er w	aves transfer	enerav	without Tra	nsfer of
m	edium.				-		
	rop a stone into a po ill travel outwards. Pl						
	e cork, it will move						
	nergy from the wave.			- 131 41		(
	onclusion : It is con ace to other without t		wave	s like other wa	ves tra	nster energy t	rom one
29. Tł	he amou <mark>nt</mark> of energy	y transferred by a v					
	ne am <mark>ou</mark> nt of energy om its rest position.						
	ave. If we shake the						
	gher frequency, and	the wave delivers m	ore	energy per seco	nd to th	ne particles of t	the string
as	it moves forward.						
		10.6 Ri	pp	e Tank			
	hat is ripple tank?					[RWP-I-25] (K nc	wledge)
	lipple tank is a device						orly bolf
	nis apparatus consister etre above the surface						
in	the tray by means of	a vibrator (paddle).					
	efine refraction of w Refraction of Waves		hand	ing the direction		[SGD-I-24] (Kno	
m	edium entering to an	other medium at so			fraction	of waves.	
	'hat is meant by diff The bending or sprea		ınd th	o charp odges		[SGD-I-24] (Kno	
	called diffraction of v		ina ti	le sharp edges	OI COIII	ers or obstacle	55 01 51115
	efine reflection of w					ı,swL-ı/II] (Knc	
	Vhen waves moving ack into the first medi						
						g	
		(Exerci					
i. W	hich of the followin	g is an example of	sim	<mark>ple ha</mark> rmonic m	otion?		DWD II oo
а	the motion of simple	e pendulum		B the motionof	ceillina		BWP-II-23)
	the spinning of the	-		D a bouncing ba	-		
	the mass of the bo		is in	creased by a f		-	
•	endulum's motion was Be increased by a f			b Remain the s		BWP-I-II,DGK-II,I	M I N-II-23]
	Be decreased by a			D Be decreased		actor of 4	
	hich of the follow	wing devices car	n be	-			
	ngitudinal waves?	R Pipple Tank				-25] [SGD-I-25] [I	_
	String aves transfer:	B Ripple Tank		C Helical Spring		-25] [SGD-II-25]	
а	energy	B frequency		C wavelength	_	D velocity	_
	hich of the followin					-23] [MTN-II-25] [
A	Conduction	B Radiation		C Wave motion		d All of these	

Al	-Razi Up to Date Papers 9 Physics - 10
vi.	In a vacuum, all electromagnetic waves have the same: a Speed B Frequency C Amplitude D Wavelength
vii.	A large ripple tank with a vibrator working at a frequency of 30Hz produces complete waves in a distance of 50cm, The velocity of the wave is: A 53cm s ⁻¹ b 60cm s ⁻¹ C 75cm s ⁻¹ D 1500cm s ⁻¹
viii.	Which of the following characteristics of a wave is independent of the others?
ix.	A speed B frequency C amplitude D wavelength The relation between v, f and λ of a wave is: [LHR-II-25] [DGK-II-25] A $vf=\lambda$ D $f\lambda=v$ C $v\lambda=f$ D $v=\lambda/f$
	Long Questions
10.1	. What is simple harmonic motion? What are the necessary conditions for a body to
	execute simple harmonic motion? [GRW-I-15, RWP-I,DGK-II,BWP-I-16, DGK-II-17, SWL-I/II-20]
10.2	. Define simple harmonic motion. Write down its four properties.
10.3	[GRW-I-15, RWP-I,DGK-II,BWP-I-16, DGK-II-17, SWI-I/II-20] B. Prove that the motion of simple pendulum is simple harmonic motion. [SGD-II-25] [DGK-II-25]
	[SWL-II,RWP-I-15, FS <mark>D-I,</mark> SGD-I-16, GRW-II,FSD-II-17, BWP-II-18, LHR-I,DGK-I-20, LHR-I,FSD-I,SWL-II,RWP-II,DGK-II-21]
10.4	. What are damped oscillations? How damping progressively reduces the amplitude of
10.5	oscillation? [LHR-I-16, SGD-II-17, DGK-I/II-18] Distinguish between longitudinal and trasverse waves with suitable examples.
	[LHr-II,FSD-II,SGD-I-14, GRW-II,DGK-I-15, MTN-II,DGK-I-16,SGD-I-18]
6. 7.	Explain types of mechanical waves. [MTN-II-17, LHR-I, RWP-I-18, RWP-I,DGK-II-20, SWL-I-21] Waves are the means of energy transfer without transfer of matter. Justify this
<i>(</i> -	statement with the help of a simple experiment. [LHR-II-14, BWP-II-15, FD-II,BWP-I-18]
8.	Explain wave as a car <mark>rier of en</mark> ergy and prove that v=fλ
9.	[GRW-I,MTN-I-17, GRW-I,FD-I/II,SWL-II-22] Explain the following properties of waves with reference to ripple tank experiment.
	a. Reflection b. Refraction c. Diffraction
10.	[BWP-II-14, MTN-I,LHR-I,SGD-II,MTN-I-15, LHR-I,GRW-II-16, SWL-II,SGD-II-18, FSD-II-20, MTN,SGD-I-22] What is ripple tank? Write the construction and working of ripple tank.
	[BWP-I-14, GRW-I-16, SWL-II-17, GRW-I-18]
11.	How can you define the term wave? Elaborate the difference between mechanical and electromagnetic waves? Give examples of each. [LHR-II-17, GRW-II-19]
	Solved Numerical Problems
10.1	: The time period of a simple pendulum is 2 s. What will be its length on the Earth?
	What will be its length on the Moon if $g_m = \frac{g_e}{6}$ where $g_e = 10 \text{ms}^{-2}$.
Solu	ution: Given Data: Time period = T = 2 sec Gravitational acceleration on Earth = g _e = 10 ms ⁻²
	Gravitational acceleration on Moon = $g_m = \frac{g_e}{6}$
	Required:(a) Length of pendulum on Earth = ℓ_e = ?
	(b) Length of pendulum on Moon = $\ell_{\rm m}$ = ?
Forr	nula: $T = 2\pi \sqrt{\frac{\ell_e}{g_e}}$
Calc	culations: (a) As we know that $T = 2\pi \sqrt{\frac{\ell_e}{g_e}}$
	By putting values, $2 = 2\pi \sqrt{\frac{\ell_e}{10}}$

By rearranging the formula, we get.

$$\left(\frac{2}{2(3.14)}\right)^{2} \times 10 = \ell_{e}$$

$$\frac{4}{39.43} \times 10 = \ell_{e}$$

$$\ell_e = 1.02m$$
 which is required.

(b) Now as it is given that;

$$g_m = \frac{g_e}{6} = \frac{10}{6} = 1.67 \text{m/sec}^2$$

Modify the above formula for Moon. $T = 2\pi \sqrt{\frac{\ell_m}{g_m}}$

By rearranging the formula, we get $\left(\frac{2}{2\pi}\right)^2 \times g_m = \ell_m$

By putting values in above equations, we get

$$\left(\frac{2}{2(3.14)}\right)^2 \times 1.67 = \ell_{\rm m}$$

$$\ell_{\rm m} = \frac{4}{39.43} \times 1.67 = 0.169$$

$$\ell_{\rm m} = 0.17 {\rm m}$$
 which is required.

10.2: A pendulum of length 0.99 m is taken to the Moon by an astronaut. The period of the pendulum is 4.9 s. What is the value of g on the surface of the Moon?

Solution: Given Data:

length of pendulum at Moon = ℓ m = 0.99m

Time period of pendulum = T = 4.9sec

Required: Value of g on surface of Moon = $g_m = ?$

Formula:

$$T = 2\pi \sqrt{\frac{l}{g}}$$

Calculations: As we know that $T = 2\pi \sqrt{\frac{l}{g}}$

Modifying this formula for Moon, we get: $T_m = 2\pi \sqrt{\frac{l_m}{g_m}}$

By rearranging the formula for the required parameter, we get: $g_m = \left(\frac{2\pi}{T_m}\right)^2 l_m$

By putting values,

$$g_{\rm m} = \left(\frac{2(3.14)}{4.9}\right)^2 (0.99)$$

$$g_m = \left(\frac{39.44}{24.01}\right)(0.99) = 1.63 \text{m}/\text{sec}^2$$

10.3:Find the time periods of a simple pendulum of 1 metre length, placed on Earth and on Moon. The value of g on the surface of Moon is $1/6^{th}$ of its value on Earth, where g_e is $10 ms^{-2}$.

Solution: $\ell = 1$ m

$$g_e = 10 \text{m/s}^2$$

$$g_{\rm m} = g_{\rm e} / 6 = 10 / 6$$

$$g_{\rm m} = 1.67 \, {\rm m/s^2}$$

Time period at Earth's surface

$$T=2\pi\sqrt{\frac{\ell}{g_{\rm e}}}$$

$$T_e = 2(3.14)\sqrt{1/10} = 6.28\sqrt{0.1}$$

 ${\rm T_e}$ =1.99s=2sec Time period on the Moon's surface

$$T_{\rm m} = 2\pi \sqrt{\frac{\ell}{g_{\rm m}}}$$

$$T_{\rm m} = 2(3.14)\sqrt{1/1.6}$$

$$T_{\rm m} = 6.28\sqrt{0.598} = 4.9s$$

10.4: A simple pendulum completes one vibration in two seconds. Calculate its length, when $q=10.0 \text{ms}^{-2}$. [RWP-II-16, GRW-II, BWP-I-19, SGD-II-22]

Solution: Given Data:

$$T = 2 s$$

Value of $g = 10 \text{m/sec}^2$

Required: Find out the length of simple pendulum = ℓ = ?

Formula: We know that

$$T = 2 \pi \sqrt{\frac{\ell}{g}}$$

By rearranging the formula, $g\left(\frac{T}{2\pi}\right)^2 = \ell$

By putting values, we get \Rightarrow $(10) \left(\frac{2}{2\pi}\right)^2 = \ell$

$$(10) \left(\frac{2}{2(3.14)}\right)^2 = \ell$$

$$\ell = 10 \left(\frac{4}{39.43} \right) = 10 \times 0.1014 = 1.014$$

10.5: If 100 waves pass through a point of a medium in 20 seconds, what is the frequency and the time period of the wave? If its wavelength is 6cm, calculate the wave speed.

Solution:

Number of waves= n = 100

 $\lambda = 6 \text{cm} = 0.06 \text{m}$

f = n/t

$$f = 100 / 20 = 5$$
Hz

T = 1/f

T = 1/5 = 0.2s

 $v = f\lambda$

$$v = 5x0.06 = 0.3 \text{m/s}$$

10.6: A wooden bar vibrating into the water surface in a ripple tank has a frequency of 12 Hz. The resulting wave has a wavelength of 3 cm. What is the speed of the wave? Solution: Given Data:

Fequency of wooden bar = f = 12Hz

Wavelength =
$$\lambda = 3 \text{cm} = \frac{3}{100} = 0.03 \text{m}$$

Required: Speed of the wave = v = ?

 $V = f\lambda$ _____(I) Formula:

Calculations: Buy using the above well known relation of equation (I). $v = f\lambda$

By putting values, we get; v = (12) (0.03)

$$v = 0.36 \text{m/s}$$

- 10.7: A transverse wave produced on a spring has a frequency of 190 Hz and travels along the length of the spring of 90 m, in 0.5 s.
- (a) What is the period of the wave?
- (b) What is the speed of the wave?
- (c) What is the wavelength of the wave?

Solution: Given Data:

Frequency of transverse wave for 0.5 s=f=190 Hz

Length of spring = $\ell = 90$ m

Time for travelling of wave = t = 0.5 s.

- Required:

 - (a) Time period of wave = T = ?(b) Speed of the wave = v = ?(c) Wavelength of wave $= \lambda = ?$

Calculations: (a) We know that

$$T = \frac{1}{f} = \frac{1}{190} = 0.01s$$

(b) For finding the speed of wave,

Speed =
$$\frac{\text{distance}}{\text{time}} = \frac{d}{t}$$

here, d = l

so,
$$v = \frac{l}{t}$$

By putting values, we get
$$V = \frac{90}{0.5} = 180 \text{m/s}$$

(C) As we know the relation $v = f\lambda$

By rearranging the formula;
$$\lambda = \frac{V}{f}$$

By putting values, we get
$$\lambda = \frac{180}{190} = 0.95$$
m

- 10.8. Water waves in a shallow dish are 6.0 cm long. At one point, the water moves up and down at a rate of 4.8 oscillations per second.
- (a) What is the speed of the water waves?
- (b) What is the period of the water waves

Solution:

$$f = 4.8 Hz$$

$$\lambda = 6 \text{cm} = 0.06 \text{m}$$

(a)
$$v = f \lambda$$

$$v = 4.8 \times 0.06 = 0.29 \text{m/s}$$

(b)
$$T = 1/f$$

$$T = 1/4.8 = 0.21s$$

10.9. At one end of a ripple tank 80 cm across, a 5 Hz vibrator produces waves whose wavelength is 40 mm. Find the time the waves need to cross the tank.

Solution: Given data:

Distance of one end of ripple tank = d = 80cm

$$=\frac{80}{100}$$
m=0.8m

Frequency of vibrator = f = 5HzWavelength of wave $=\lambda = 40$ mm

$$=\frac{40}{1000}$$
m $=0.04$ m

Required data: Time period of wave = T = ?

Formula: $v = \frac{d}{T}$ and $v = f\lambda$

$$T = \frac{1}{f}$$

Calculations: By using following relation; $V = \frac{d}{T}$

By rearranging the formula:

To find v, we known that =

By putting values in eq (II)

v = (5) (0.04) = 0.2 m/s

By putting value of v in eq (I), we get

$$T = \frac{0.8}{0.2} = 4s$$

10.10. What is the wavelength of the radio waves transmitted by an FM station at 90 MHz? where 1M = 10^6 , and speed of radio wave is $3 \times 10^8 \text{ms}^{-1}$.

Given data Solution:

Frequency of radiowave = f = 90M Hz

 $(1M = 10^6)$ As we know

 $f = 90 \times 10^6 \, Hz$ So.

Required data: Wavelength of radiowave = λ = ?

Formula: $v = f\lambda$

Calculations: As we know that $v = f\lambda$

By rearranging the formula; $\lambda = \frac{\mathbf{v}}{\mathbf{f}}$

By putting values in above equation we get;

$$\lambda = \frac{3 \times 10^8}{90 \times 10^6} = \frac{3 \times 10^{8-6}}{90} = 0.033 \times 10^2 = 3.33 \text{m}$$

Analytical and Conceptual Questions

Quick Quiz

What is the displacement of an object SHM when the kinetic and potentional energies are equal?

Ans. The kinetic and potential energies are equal of the object in simple harmonic motion (SHM) when object is exactly at the mid point of mean and extreme position.

Do mechanical waves pass through vacuum, that is, empty space?

Ans.No, mechanical waves can not pass through vaccum. Because mechanical waves always require some medium for their propagation.

Useful Information

Do you know?

A human eardrum can oscilalte back and forth up to 20,000 time in one second.

Check your understanding:

Tell whether or not these motions are examples of simple harmonic motion:

- (a) Up and down motion of a leaf in water pond. Ans. It is an example of SHM.
- (b) Motion of a ceiling fan Ans. It is not an example of SHM.
- (c) Motion of hands of clock Ans. It is not an example of SHM.
- (d) Motion of a plucked string fixed at both its end Ans. It is an example of SHM.
- (e) Movement of honey bee Ans. It is not an example of SHM.

D real, inverted and magnified

D N-152

C H-3

C virtual, upright and magnified

12.

A P-32

Which compound is used for diagnosis of brain tumor?

B I-131

Al-l	Razi Up to Date Papers	94	Physics - 10
Tin	ne Allowed:1:45 Hours	(SUBJECTIVE TYPE)	Maximum Marks: 48
		Section - I	
Q2.	Write short answers	to any FIVE (5) questions.	2×5=10
(i)	Define time period and fre	•	
(ii)	waves?	h a point of a medium in 20 secor	, ,
(iii)		s of motion in everyday life that are	e simple harmonic motion.
(iv)	Write some uses of capac		
(v) (vi)		of series combination of capacitors tween fixed capacitor and variable	
(vi) (vii)	What is the difference bet		capacitoi !
(viii)	Define resistance and wri	•	
`Q3.		to any FIVE (5) questions.	2×5=10
(i)		. How does it change with the incr	ease in amplitude?
(ii)	How can you reduce the I	evel of noise pollution?	
(iii)	What is meant by SONAF	R (sound navigation and ranging)?	
(iv)	What is the difference of	data and information?	
(v)	How are light signals sent		
(vi)	What is the difference bet	tween h <mark>ar</mark> dware a <mark>nd</mark> software?	
(vii)	Define atomic number and		
(viii)		mate dead tree age by C-14?	
Q4.		to any FIVE (5) questions.	2×5=10
(i)	Define power of lens, also		
(ii)	spherical mirror.	ntions when object distance are	taken positive and negative in
(iii)	Describe the principle foc	us of a convex lens by ray diagran	n.
(iv)	Write two uses of logic ga	ates.	
(v)	Draw the symbol of NOT	gate and also write its truth table.	
(vi)	Define the term thermioni	c emission.	
(vii)	Write working principle of		
(viii)	What is right hand rule to	determine the magnetic poles of a	a current carrying coil?
	\\ n=	Section - II	
Note	e: Attempt any TWO q		9×2=18
Q5. (a	a) What is meant by re	efraction of wave? Explain th	<mark>e refracti</mark> on of <mark>w</mark> ater waves
	diagrammatically by ι	ising ripple tank.	4
(1	b) Two capacitors of ca	apacitances 6μF and 12μF are	connected in series with 12V
	battery. Find the equ	livalent capacitance of the co	<mark>mbina</mark> tion. Find the potential
	difference across eac	h capacitor.	5
Q6. (a) Explain transmission	of radio waves through space.	4
(b) A sound wave has a f	requency of 2KHz and wave len	gth 35cm. How long will it take
	to travel 1.5km?		5
	a) What is an electron gi	un O Haur dage it week in CDOO	4
Q7. (.,	un? How does it work in CRO?	*
	•	un? How does it work in CRO? her has turn ratio 1:100. An a	•

AI P	275	In to Data Danama			05		∌ P	hyeice - 10
Al-K	a <i>L</i> I l	Ip to Date Papers	2 h		95	11) 202		hysics - 10
		L	.an	ore (Gr	oup-	11) 202	4	
		Of Candidate:			-	r Code: 1062	D D	M M Y Y Y Y Morning (
Time	Allo	wed: 15 Minutes		stive Type	Maxim	ım Marks: 12	Ro	II No. Paper Code
Note:	B, 0 in f ma	u have four choice C and D. The cho front of that ques rker or pen to fill to cles will result in ze	es fo ice w stion the c	which you think number on your ircles. Cutting o	is correctour answor filling o	t, fill that circle er book. Use	10000000000000000000000000000000000000	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1.	Wa	ve transfers:						
	Α	velocity	В	wavelength	С	frequency	D	energy
2.	Wh	nich is a <mark>n e</mark> xampl	e of	longitudinal w	aves:			
	Α	sound waves	В	light waves	С	radio waves	D	water waves
3.	Wh	nich of the follow	ing c	quantity is not	change	<mark>d d</mark> uring refrac	tion of	light:
	Α	its direction	В	its direction	С	its wavelength	n D	its frequency
4.	A p	ositive electric c	harg	je:				
	Α	attract other posi	itive o	charge	В	repels other p	ositive c	harge
	С	attract a neutral of	charg	ge	D	repels a neutr	al charg	е
5.	Wh	nich is the powe	r ra	ting of lamp of	connect	ed to 12V so	urce wh	nen it carries 2.5
	cur	rent:						
	Α	4.8W	В	14.5W	С	30W	D	60W
6.	The	e direction of ind	uced	d emf in a circ	uit is in a	accordance wi	th cons	ervation of:
	Α	mass	В	charge	С	m <mark>ome</mark> ntum	D	energy
7.	AN	D gate can be for	rmed	l by using two	:			
	Α	NOT gate	В	OR gates	C	NAND gates	D	NOR gates
8.	The	e brain of any co	mpu	ter system is:				
	Α	monitor	В	CPU	C	memory	D	control unit
9.	Wh	nich among the fo	ollow	ing radiations	has mo	r <mark>e penetratin</mark> g	power:	
	Α	a beta particle			В	<mark>a</mark> gam <mark>ma</mark> ray		
	С	an alpha particle			D	all have the sa	ame per	netrating ability
10.	In c	case of simple pe	endu	lum which cor	mponent	of weight act	s as res	toring force:
	Α	mg sinθ	В	mg cosθ	С	mg secθ	D	mg $cosec\theta$

C oscilloscope

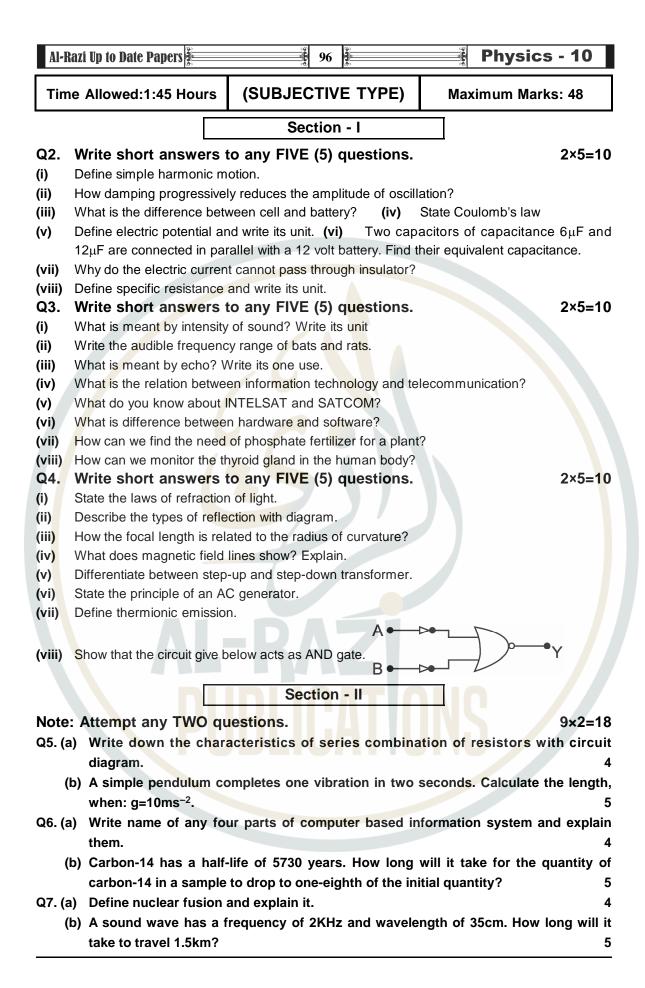
B converging mirror

D converging lens

D stethoscope

11. We can see sound waves by using:

B telescope


Farsightedness can be corrected by using:

A microscope

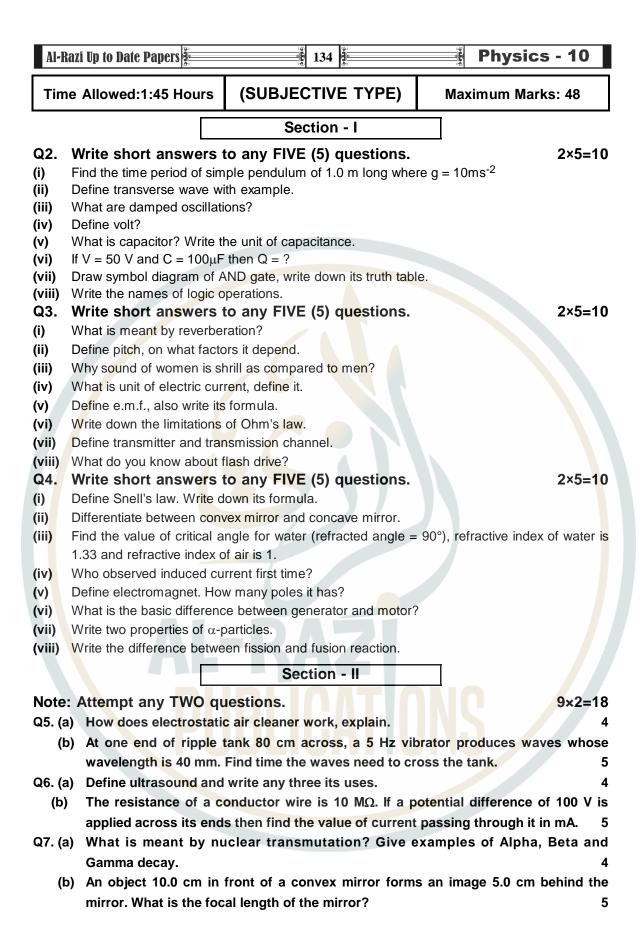
A diverging mirror

C diverging lens

12.

A Half

B One quarter


C One eighth

D None of these

Al-I	Razi Up to Date Papers	132	Physics - 10
Tim	ne Allowed:1:45 Hours	(SUBJECTIVE TYPE)	Maximum Marks: 48
		Section - I	
Q2.	Write short answers	to any FIVE (5) questions.	2×5=10
(i)	Differentiate between com	pression and rarefaction.	
(ii)	Write two properties of sir	nple harmonic motion.	
(iii)	What is spring constant?	Write its formula.	
(iv)	Does electric potential de	pend upon test charge?	
(v)		tential difference between two poi	nts? Define its units.
(vi)	What is meant by Faraday		
(vii)	Write the symbol and truth	•	
(viii)	What do you know about		245 40
Q3.		to any FIVE (5) questions.	2×5=10
(i) (ii)	Write two methods to redo Define intensity level of so		
(iii)	Differentiate between nois		
(iv)	What is current also write		
(v)	Define unit of resistance.	no formula.	
(vi)	Describe Joule's law also	write its formula.	
(vii)	Define fax machine		
(viii)	Write down two uses inter	rnet.	
Q4.	Write short answers	to any FIVE (5) questions.	2×5=10
(i)	State what is difference be	etween regular and irregular reflec	ction?
(ii)	What mirror formula? Wri	te its mathematical form.	
(iii)	An object is placed 6 cm i	n front of a concave mirror that ha	as focal length 10 cm. Determin <mark>e</mark>
	the position of image.		
(iv)	Define right hand grip rule		
(v)	What is D.C. motor?		
(vi)	State the principle of an A		
(vii)	What is the atomic number		13 🗸
(viii)	Find the number of protor	s and neutrons in nuclide defined	by 6° A.
		Section - II	MIU //
Note	e: Attempt any TWO q	uestions.	9×2=18
Q5. (a	a) Descr <mark>ibe const</mark> ruct <mark>i</mark> o	n of ripple tank and hence exp	lain phenomenon of reflection
	and diffraction.		4
(b)) The charge of how m	nany negatively charged particl	les wou <mark>ld</mark> be equal to 100 μC.
	Assume charge on on	e negatively charged particle is	1.6×10 ⁻¹⁹ C. 5
Q6. (a	a) Explain the parallel co	ombination of ressistors with the	e help of diagram. 4
(b)) A marine survey send	s a sound wave straight to the s	seabed. It receives an echo
	1.5 s late. The speed	of sound in seawater is 1500ms	⁻¹ . Find the depth of the sea at
	this position.		5
Q7. (a	a) What is transformer?	State the principle of its workin	g? Write a note on its types. 4
(I	b) A convex lens of foca	I length 6 cm is to be used to fo	orm a virtual image three times
	the size of the object.	Where must the lens be placed	? 5

Lahore (Group-II) 2025

Roll N	lo. C	Of Candidate:		P	ape	r Code: 1062 _D	D D	M M Y Y Y Y Morning
Time	Allo	wed: 15 Minutes	_		ximu	ım Marks: 12	R	oll No. Paper Code
Note:	B, 0 in f ma	u have four choice: C and D. The choic ront of that quest rker or pen to fill th	s for e w ion ne ci	r each objective type thich you think is co- number on your a ircles. Cutting or fillinark in that question	rrect nsw ing c	t, fill that circle er book. Use	10234666788	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1.	The	e relation betweer	v , j	f and λ of a wave is	s:			
	Α	$Vf = \lambda$	В	$f\lambda = V$	С	$v\lambda = f$	D	$V = \lambda / f$
2.	Wh	ich for <mark>m o</mark> f energ	y is	sound:				
	Α	Mechanical	В	Electrical	С	Thermal	D	Chemical
3.	S.I	units of capacitar	ice	of a capacitor is:				
	Α	V	В	A	С	F	D	N
4.	Wh	ich of the followir	ng q	uantity is not char	nged	d during refract	ion of	light:
	Α	Its direction	В	Its speed	C	Its wavelength	D	Its frequency
5.	Fiv	e joules of work i	s n	ee <mark>de</mark> d to shift 10 (C of	charge from o	en pl	ace to another. Th
	pot	ential difference l	etv	veen the places is:				
	Α	0.5 V	В	2 V	С	5 V	D	10 V
6.	An	electric current in	CO	nductors is due to	the	flow of:		
	Α	Positive ions	В	Negative ions	С	Positive charge	es D	Free electrons
7.	The	e direction of indu	ced	l e.m.f in a circuit i	s in	accordance wi	th co	nservation of:
	Α	Mass	В	Energy	С	Charge	D	Momentum
8.	Hal	f-life of carbon-14	is:					
	Α	123 years	В	30 years	С	5730 years	D	7530 years
9.	The	e process by whic	h el	lectrons are emitte	d by	y a hot metal su	urface	is know as:
	Α	Boiling			В	Evaporation		
	С	Conduction			D	Thermionic em	ission	
10.	Wh	at does the term	e-ma	ail stand for:				
	Α	Emergency mail	В	Electronic mail	С	Extra mail	D	External mail
11.	Rel	lease of energy by	the	e sun is due to:				
	Α	Nuclear fission	В	Chemical reaction	С	Nuclear fusion	D	Burning of gases
12.	For	mula for the elect	ric	potential is:				
	Α	$V = \frac{W}{g}$	В	v = qw	С	$v = \frac{q}{w}$	D	v = 2qw

are in Reading Material.

7. C 498m

Solution of Lahore Board (G-I)-2025

Objective Type

- 1. C Repel positive 2. A 8 bits
- **3.** B B = 1, A = 1 **4.** B Mechanical
- 5. C Processed data 6. D V = IR7. B Frequency 8. C 8Ω
- 9. D Magnetic compass 10. B 1.31
- 11. B Same 12. B One quarter

Subjective Type (Section-I)

- Q2. Write short answers to any FIVE (5) questions.
- (i) Differentiate between compression and rarefaction.

Ans:

Compression	Rarefaction						
In the regions of							
compression particles	rarefaction, particles of						
of the medium are	the medium are spaced						
closer together.	apart.						

(ii) Write two properties of simple harmonic motion.

Ans. 1. In simple harmonic motion a body always moves about a mean position.

2. Its acceleration is always directed towards the mean position

(iii) What is spring constant? Write its formula.

Ans: According to Hooke's law:

$$F = Kx$$

K is called spring constant. The value of K is measure of stiffness of spring. Stiff spring have large value of K and soft spring have small

value of K which is calculated by $K = -\frac{F}{x}$

(iv) Does electric potential depend upon test charge?

Ans: Electric potential is a characteristic of the field of source charge and is independent of a test charge that may be placed in the field.

(v) How would you define potential difference between two points? Define its units.

Ans. The potential difference between two points is equal to the energy that a unit positive charge imparts while moving towards another point in the direction of the field.


Unit: Its unit is Volt (V).

(vi) What is meant by Faraday Cage?

Ans: A Faraday Cage is an enclosure used to block electric fields and electromagnetic waves.

(vii) Write the symbol and truth table of NAND gate.

Ans. Symbol of NAND gate:

 $X = \overline{A.B}$ And read it as "X is equal to A AND B NOT".

NAND gate Truth Table:

•	,		
	A	В	$X = \overline{A.B}$
	0	0	1
	0	1	1
	1	0	1
	1	1	0

(viii) What do you know about discovery of electron?

Ans: In the 1850's, physicists started to examine the passage of electricity through a vacuum by putting two electrodes in a sealed vacuum tube. Some kind of rays were emitted from the cathode or the negative electrode. These rays were called cathode rays. J.J. Thomson in 1897 observed the deflection of cathode rays by both electric and magnetic fields. From these deflection experiments, he concluded that cathode rays must carry a negative charge. These negatively charged particles were given the name electrons.

Q3. Write short answers to any FIVE (5) questions.

(i) Write two methods to reduce noise pollution.

Ans: Noise pollution can be reduced to acceptable level by replacing the noisy machinery with environment friendly machinery and equipments, putting sound reducing barriers, or using hearing protection devices.

(ii) Define intensity level of sound, write its unit.

Ans: Intensity level of the sound: The difference between the loudness of two sounds (L - L₀) is called intensity level of sound. The intensity level of an unknown sound is given by intensity level

$$L - L_o = k \log \frac{1}{l_o}$$

Unit: bel is a very large unit of intensity level of sound but generally the small unit decible is used.

(iii) Differentiate between noise and music.

Ans: Noise: Sound which has jarring and unpleasant effect on our ears is called noise.

Music: Such sounds which are pleasant to our ears are called musical sounds.

(iv) What is current also write its formula.

Ans. Electric current: The rate of flow of electric charge through any cross-sectional area is called Charge.

Formula:

$$I = \frac{Q}{t}$$

(v) Define unit of resistance.

Ans. The property of a substance which offers opposition to the flow of current through it, is called its resistance.

SI Unit: The SI unit of resistance is ohm (Ω) .

(vi) Describe Joule's law also write its formula.

Ans. Joule's law: The amount of heat generated in a resistance due to flow of charges is equal to the product of square of current T', resistance 'R' and the time duration t.

Equation:
$$W = I^2Rt = \frac{V^2t}{R}$$

(vii) Define fax machine.

Ans. Telefacsimile's or Fax machines are must for many businesses around the world.

A fax machine basically scans a page to convert its text and graphic into electronic signals and transmits it to another fax machine through telephone line. The receiving machine converts the signal and uses a printer to create copy of receiving message.

(viii) Write down two uses internet.

Ans. 1. Among the widespread use of internet, the use of email much higher. It allows fast delivery of messages to any active site on the Internet.

2. People also use the internet for money transfer, online shopping etc.

Q4. Write short answers to any FIVE (5) questions.

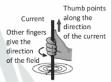
(i) State what is difference between regular and irregular reflection?

Ans:

I XIII.	
Reg <mark>u</mark> lar reflect <mark>i</mark> on	Irregular reflection
The reflection	The rough surfaces of objects
by smooth	reflect the rays of light in many
surfaces is	direction. Such reflection in
called regular	called irregular reflection.
reflection. Incident rays Reflected rays	Incident Reflected rays Response Rough surface
Smooth surface	

(ii) What is mirror formula? Write its mathematical form.

Ans.Mirror formula: Mirror formula is the relationship between object distance p, image distance q from the mirror and focal length of the mirror.


$$\frac{1}{f} = \frac{1}{p} + \frac{1}{q}$$

(iii) An object is placed 6 cm in front of a concave mirror that has focal length 10 cm. Determine the position of image.

Ans. p = 6cm
f = 10cm
Formula:
$$\frac{1}{f} = \frac{1}{p} + \frac{1}{q}$$

 $\frac{1}{q} = \frac{1}{10cm} - \frac{1}{6cm}$
 $\frac{1}{q} = -\frac{1}{15cm}$
 $q = -15cm$

(iv) Define right hand grip rule.

Ans: Right Hand Grip Rule: Grasp a wire with your right hand such that your thumb is pointed in the direction of current. Then curling fingers of your hand will point in the direction of the magnetic field.

(v) What is D.C. motor?

Ans: Electric motor (D.C. motor) is a device which converts electrical energy into mechanical energy.

(vi) State the principle of an A.C. generator.

Ans: If a coil is rotated in a magnetic field, a current will be induced in the coil. The strength of this induced current depends upon the number of magnetic lines of force passing through the coil. The number of lines of magnetic force passing through the coil will be maximum when the plane of the coil is perpendicular to the lines of magnetic force. The number of lines of magnetic force will be zero when plane of the coil is parallel to the lines of force. Thus, when a coil rotates in a magnetic field, the induced current in it continuously changes from maximum to minimum value and from minimum to maximum value and so on. This is the basic principle on which an A.C. generator works.

(vii) What is the atomic number, write its

Ans. Atomic number: The number of protons inside the nucleus is called the atomic number. Atomic number is represented by Z.

(viii)Find the number of protons and

neutrons in nuclide defined by ${}_{6}^{13}X$.

Ans. From the symbol, we have

Atomic number Z = number of protons = 6

Atomic mass A = number of protons + number of neutrons = 13

But number of protons are 6, so number of neutrons will be 7.

So the element is an isotope of carbon-6, and is written as ${}_{6}^{13}$ C.

Solution of Lahore Board (G-II)-2025

Objective Type

- $f\lambda = v$ Α
- 3. C F
- Mechanical 4.
- D Its frequency
- 5. Α 0.5 V
- D Free electrons 6.
- В 7. Energy
- 8.
- C 5730 years
- 9. D Thermionic emission
- 10. B Electronic mail
- 11. C Nuclear fusion 12. A

Subjective Type (Section-I)

- O2. Write short answers to any FIVE (5) questions.
- (i) Find the time period of simple pendulum of 1.0 m long where $g = 10 \text{ms}^{-2}$
- **Sol.** Given Data:

length of pendulum = $\ell = 1.0$ m

gravitational force $g = 10.0 \text{ms}^{-2}$ time period T = ?

Formula: $T = 2\pi \sqrt{\frac{\ell}{g}}$

 $T = 2(3.14)\sqrt{\frac{1.0}{10.0}}$ Solution:

 $T = 6.28\sqrt{0.1}$

T = (6.28)(0.31622)T = 1.99 sec

(ii) Define transverse wave with example.

Ans. "A wave in which the vibratory motion of the particles of the medium is perpendicular to the direction of motion of the wave is called a transverse wave."

Examples: Water surface waves, waves generated in a string etc.

(iii) What are damped oscillations?

Ans. Damped Oscillations: Oscillations of a system in the presence of a resisting force are called damped oscillations. Shock absorbers in automobiles are one practical application of damped motion.

(iv) Define volt?

Ans: SI unit of potential difference is volt which is defined as:

If one joule of work is done against the electric field in bringing one coulomb positive charge from infinity to a point in the electric field then the potential at that point will be one

volt.

(v) What is capacitor? Write the unit of capacitance.

Ans: Capacitor: A device which is used to store charge is called capacitor.

The SI unit of capacitor is farad.

(vi) If V = 50 V and $C = 100 \mu\text{F}$ then Q = ?

Ans: O = CV

 $O = 100 \mu F \times 50V = 5000 \mu c$

(vii) Draw symbol diagram of AND gate, write down its truth table.

Ans.

Symbol: B ___

Truth Table of AND Gate:

A	В	X = A.B
0	0	0
0	1	0
1	0	0
1	1	1
94 41		01 1

(viii) Write the names of logic operations.

Ans: Logical operations are as follows.

- AND operation ii. OR operation
- iii. NOT operation
- iv. NAND operation v. NOR operation
- Q3. Write short answers to any FIVE (5) questions.

(i) What is meant by reverberation?

Ans: When the sound is reflected from the highly reflective surfaces of the walls, ceiling and floor of the room, there is a lot of distortion in the sound. This is caused by multiple reflections, called reverberation.

(ii) Define pitch, on what factors it depend.

Ans: Pitch: Pitch is the characteristic of sound by which we can distinguish between a shrill and a grave sound. Pitch depends upon the frequency.

(iii) Why sound of women is shrill as compared to men?

Ans. The frequency of voice of women is higher than that the men. Therefore the voice of ladies is shrill and having high pitch.

(iv) What is unit of electric current, define it. Ans. Electric current: The rate of flow of electric charge through any cross-sectional area is called Charge.

Formula:

$$I = \frac{Q}{t}$$

Unit: SI unit of current is Ampere (A).

(v) Define e.m.f., also write its formula.

Ans: It is the energy supplied by a battery to a unit positive charge when it flows through the closed circuit. Or

Physics - 10

The energy converted from non-electrical forms to electrical form when one coulomb of positive charge passes through the battery. Therefore

e.m.f =
$$\frac{\text{Energry}}{\text{Charge}}$$

 $E = \frac{W}{Q}$

(vi) Write down the limitations of Ohm's law.

Ans: Ohm's law is applicable when temperature of conductor is kept constant. It has been observed that only good conductors obey ohm's law as long as the electric current through them is not very large and physical state of the conductor also remains the same.

(vii) Define transmitter and transmission channel.

Ans: The transmitter processes the input signal. The transmission channel is the medium which sends the signal from source to destination. It may be a pair of wires, a coaxial cable, a radiowave or optical fibre cable. So, the signal power progressively decreases with increasing distance.

(viii) What do you know about flash drive?

Ans. Flash drive is an electronic based device and consist of data storage ICs. A flash drive is small storage device that can be used to transport files from one computer to another.

- Q4. Write short answers to any FIVE (5) questions.
- (i) Define Snell's law. Write down its formula.

Ans. Snell's Law: The ratio of the sine of the angle of incidence \hat{i} to the sine of the angle of refraction \hat{r} is always equal to a constant i.e.

$$\frac{\sin i}{\sin r} = \text{constant} = n$$

where the ratio $\frac{\sin i}{\sin r}$ is known as the

refractive index of the second medium with respect to the first medium. It is called Snell's law.

(ii) Differentiate between convex mirror and concave mirror.

Ans:

	Convex mirror	Concave mirror
1.	A spherical mirror	A reflector mirror
	surface is reflective	whose inner deep surface is reflective is called a concave
	mirror.	mirror.

		The size of the image			
		in the consumer			
	always less than the	depends on the			
	body size.	position of the body.			
3.	Convex mirror	Consumer can create			
	forms only virtual	both real and virtual			
	and upright image.	images.			

(iii) Find the value of critical angle for water (refracted angle = 90°), refractive index of water is 1.33 and refractive index of air is 1.

Sol:
$$n = \frac{\sin r}{\sin i}$$

$$\sin = \frac{\sin \hat{r}}{n}$$

$$(\because \hat{r} = 90^{\circ}) \text{ and } (\because i = \hat{c})$$

$$\sin \hat{c} = \frac{\sin 90}{1.33}$$

$$\sin \hat{c} = \frac{1}{1.33}$$

$$\sin \hat{c} = 0.75$$

$$c = \sin^{-1}(0.75)$$

$$\hat{i} = 48.8^{\circ}$$

(iv) Who observed induced current first time?

Ans: It is said; Joseph Henry (1797–1878) had observed an induced current before Faraday, but Faraday published his results first and investigated the subject in more detail.

(v) Define electromagnet. How many poles it has?

Ans. Electromagnetic: The type of temporary magnet, which is created when current flows through a coil, is called an electromagnet. It has two poles. i.e. North pole and south pole.

(vi) What is the basic difference between generator and motor?

Ans.

Generator	Motor		
A generator converts	A motor converts		
mechanical energy into			
electrical energy that	mechanical energy.		
we can use to run			
various electrical	used to move an object.		
appliances.			

(vii) Write two properties of α-particles.

Ans: 1. Alpha (α) particles have the greatest power of ionization of as compared to beta particles and gamma rays. It is due to large positive charge and large mass of alpha particles.

2. Alpha particles has the shortest range because of its strong interacting or ionizing power.

(viii)Write the difference between fission and fusion reaction.

Ans: Fission reaction takes place when a heavy nucleus like U-235 splits or fissions into two smaller nuclei by absorbing a slow moving (low energy) neutron.

$${}^1_0 n \ + \ {}^{235}_{92} U \ \rightarrow \ {}^{236}_{92} U^* \ \rightarrow \ X + Y \ + Neutron$$

Slow neutrons Stable Uranium Unstable Uranium smaller nuclei

Nuclear Fusion: When two light nuclei combine to form a heavier nucleus, the process is called nuclear fusion.

Solution of Gujranwala Board (G-I)-2025

					. (-)
	Objective Type				
1.	С	20,000 times	2.	Α	1246kmh ⁻¹
3.	В	Decreases	4.	В	$v = f\lambda$
5.	C	−15 cm	6.	В	146
7.	Α	X = A.B 8.	В	Free	electrons
9.	В	20 Hz - 20 kHz			
11.	D	Internet	12.	C	+2q and $-2q$
Subjective Type (Section-I)					

- Q2. Write short answers to any FIVE (5) questions.
- (i) Define time period and frequency.

Ans. Time period (T): "The time required to complete one vibration of a body in vibratory motion around a point is called time period." It is denoted by T.

The unit of time period is second (s).

Frequency: The number of vibrations per second of a body in vibratory motion around a point is called frequency. It is reciprocal of time period i.e., f = 1/T

It is denoted by f.

- (ii) Define electromagnetic waves and write down the names of its types.
- Ans. Electromagnetic Waves: "Such waves which do not require a medium for their propagation are called electromagnetic waves."

Types: Radio waves, television waves, X-rays, heat and light waves.

(iii) If the length of simple pendulum is doubled, what will be the change in its time period?

Ans.If the length of the simple pendulum become doubled then its times period increase

by
$$\sqrt{2}$$
 times e.g.

$$T = 2\pi \sqrt{\frac{\ell}{g}} \quad(i)$$
If $\ell' = 2\ell$

Then
$$T' = 2\pi \sqrt{\frac{2\ell}{g}}$$

$$T' = 2\pi \sqrt{\frac{\ell}{g}} \sqrt{2}$$

Now using equation (i)

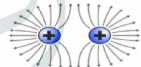
$$T' = T\sqrt{2}$$

$$T' = \sqrt{2}T$$

(iv) Draw symbol of NOT gate and write down its truth table.

Ans. NOT Gate Symbol:

$$A - - - X = \bar{A}$$


Truth Table:	A	$X = \overline{A}$
	0	1
	1	0

- (v) Write down definition of analogue and digital quantities.
- Ans. Analogue quantities: The quantities whose values vary continuously are known as analogue quantities.

Digital quantities: The quantities whose values vary in non-continuously manner are called digital quantities. Digital quantities are expressed in form of digits or numbers.

(vi) Draw electric field lines between two positive point charges.

Ans:

Electric field lines for two positive point charges.

- (vii) Write down any two uses of capacitors. Ans. Following are the uses of capacitors:
- 1. Capacitors are used for tuning transmitters, receivers and radios.
- 2. Capacitors are used in table fans, ceiling fans, exhaust fans, air conditioners, air coolers, washing machines and many household appliances.
- (viii)Define electric field and electric field intensity.
- Ans. Electric field: "The electric field of a charge is the area around the charge in which it exerts an electrostatic force on other charges."

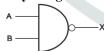
Electric field intensity: The strength of an electric field at any point in space is known as electric field intensity.

Formula:
$$E = \frac{F}{q_o}$$

- Q3. Write short answers to any FIVE (5) questions.
- (i) Describe briefly that sound is produced by a vibrating body.

Ans: Sound waves are produced by the vibrating

Al-Razi Guess Paper consist of 100 MCQs, 100 Short Questions and Long Questions to get 100% Success in Examination


OBJECTIVE TYPE Multiple Choice Questions

- 1. The particles that emitted from the hot metal surface are:
 - A Holes C Neutrons
- B Protons d Electrons
- 2. waves transfer:
 - A Frequency B Wavelength
 - C Velocity d Energy
- 3. The index of refraction depends on:
 - A Focal length
 - b Speed of light
 - C Image distance
 - D Body distance
- 4. What does the term e-mail stand for?
 - A Emergency Mail
 - **b** Electronic Mail
 - C External Mail D None
- 5. The ___ of waves does not depend on other characteristics.
 - A Speed
 - B Frequency C Amplitude D Wavelength
- 6. Which method is used to transfer energy?
 - A Conduction B Radiation
 - C Wave motion d All these
- 7. The Focal length formula is:

a
$$f = \frac{R}{2}$$
 B $f = \frac{R}{4}$

$$C f = \frac{R}{3}$$
 $D f = \frac{R}{5}$

- 8. From which of them can we get all kinds of information?
 - A Books
- B Teacher
- d Internet C Computer
- 9. Which logic operation is obtained by this gate?

- AAND B NOR C NAND D OR
- 10. The output of NAND gate
- will be 0 if: B A=0, B=1
 - A = 1,B=0C A=1,B=1D A = 0, B = 0
- 11. Which is the type of sound energy?

- A Chemical C Electrical
- B Thermal
- d Mechanical
- 12. The formula for capacitance law is:
- 13. A method in which electrons are emitted from the heated surface of the metal is called:
 - A Boiling
- B Evaporation
- C Thermionic emission
- D Conduction
- 14. The sun emits energy:
 - A By nuclear fission
 - b By nuclear fusion
 - C Due to combustion of gases
 - D By chemical reaction
- 15. The brain of any computer system is:
 - A Monitor B Memory
 - C CPU D Control unit
- 16. Computer Based Information System (CBIS) can be accessed from:
 - A4 B3 C5
- 17. The presence of magnatic field can be detected by:
 - A Small mass
 - B Stationary positive charge
 - C Stationary negative charge
 - d Magnetic compass
- 18. If the ratio of turns of the transformer is 10:

$$A^{I_3} = 101_P$$

- $B N_S = \frac{N_P}{10}$
- $C V_s = V_p \times 10$
- $N_{s} = 10N_{p}$
- 19. The speed of sound at $0^{\circ}C$
 - A $386ms^{-1}$ B $376ms^{-1}$

 - $c 331 ms^{-1}$ D $231ms^{-1}$
- 20. All electromagnetic waves in a vaccum behave the same:
 - a Speed B Frequency

- C Amplitude D Wavelength 21. The value of K in Coulomb's
 - A $9 \times 10^9 Nm^{-2}C^{-2}$
 - b $9 \times 10^9 Nm^2 C^{-2}$
 - $C 9 \times 10^9 \, m^{-2} C^{-2}$
 - D $9 \times 10^9 Nm^2C^2$
- __is the formula of electric field intensity.
 - a $E = \frac{F}{a}$ B E = Fq
 - $C^{E} = \frac{1}{qF} D^{E} = 2Fq$
- 23. The frequency is equal to:
 - a $f = \frac{1}{T}$ B $f = \frac{\ell}{g}$
 - C $f = 2\pi \sqrt{\frac{\ell}{g}}$ D f = kx
- 24. The relationship between velocity, frequency and wavelength of a wave is:
 - A $vf = \lambda$ b $f\lambda = v$
 - $C v\lambda = f \quad D v = \frac{\lambda}{f}$
- 25. If X=A.B then X is 1, if:
 - a A=1,B=1 B A=0, B=0
 - C A=0, B=1 D A=1, B=0
- 26. In computer terminology **Information means:**
 - A Any data
 - B Redundant data
 - C Processed data
 - D More data
- 27. The audible frequency range of sound of a normal person is:
 - A 10 Hz 10 kHz
 - **b** 20 Hz 20 kHz
 - C 25 Hz 25 kHz D 30 Hz - 30 kHz
- 28. The part of a DC motor reverses the direction of the current flowing through the coil after every half cycle.
 - A Armature B Commutator
- C Brushes
- d Slip rings

- 96. The basic operation of a computer is:
 - A Arithmetic operations
 - B Logic operation
 - C Non-arithmetic operations
 - d Arithmetic and Logic Operation
- 97. An isotope of uranium has the number of neutrons:
 - A 92 b|146 C 238 D 330
- 98. There are rays used for brain radiotherapy.
 - A Alfa rays B Beta rays
 - C Gamma rays D X-rays
- 99. The change in nucleon number during a beta-decy is:
 - A decreases 4 B increases 4
 - C Does not change
 - D Decreases 2
- 100. One kg of Uranium-235 fission reaction gives energy:

A $4.7 \times 10^{11} J$ B $5.7 \times 10^{11} J$ $c_{6.7\times10^{11}J} D_{7.7\times10^{11}J}$

Short Ouestions

- 1. What is meant by ohmic conductor?
- 2. What is meant by electric
- potential?
 3. Define echo.Write the speed of sound in air at normal temperature.
- 4. Define loudness. On what factors does it depend?
- **5.** Define Coulomb's law.
- **6.** Write the definition of electric power and its unit.
- 7. Write two uses of ultrasound.
- 8. Define simple harmonic
- **9.** What is the difference between mechanical waves electromagnetic waves?
- **10.** What is electrostatic?
- 11. Define EMF.
- 12. State Ohm's law and write its equation.
- **13.** State Joule's law.
- **14.** Define isotopes.
- 15. What is meant by pitch of sound?
- 16. What is an Electroscope?17. How is nature of charge detected by electroscope?
- 18. What is the difference between hardware and software?
- **19.** What is meant by Internet?
- 20. What is meant by regular reflection of light?
- **21.** Define resistivity and write its formula.
- 22. Explain the types of transformer.
- 23. Define Analogue quantities and
- give examples.

 24. What is meant by insulator? Write an example of it.

- 25. Write two hazards of radiations.
- **26.** Define intensity of sound. **27.** Define conventional current. **28.** What is meant by solenoid?
- 29. Name any two factors affecting the induced E-M-F.
- **30.** What is meant by resolving
- **31.** How does a circuit breaker
- **32.** What is word processing? 33. Define nuclear fusion and write
- its equation.

 34. Write the formula for parallel method of connecting capacitors.
- **35.** What is a variable capacitor? **36.** What is a transformer? Write
- its principle.
- **37.** What is Telecommunication?
- 38. Write two properties of alpha
- **39.** Define refractive index. What is its unit?
- 40. What is meant by electric field lines? What is their direction?
- 41. Write the definition of electromagnet.
- 42. What is a Re Lay? How does it work?
- 43. What is meant by spring constant?
- **44.** Define sound waves and give an example.
- 45. Define half-life.
- **46.** What is compression?
- **47.** Define pitch and quality.
- 48. What is meant by ultrasound?
- **49.** What is the right-hand rule for finding the magnetic poles of a current-carrying coil?
- 50. Write two/three uses of computer
- 51. Explain Fleming's left-hand
- 52. Define electromagnetic induction.
- 53. Define Lenz's law.
- **54.** Define mutual induction.
- **55.** Define restoring force.
- 56. Define Restoring Force. Which component of weight acts as the restoring force in the vibratory motion of a simple pendulum?
- 57. What is meant by damping oscillations?
- **58.** What is meant by sound level? Write its formula.
- **59.** What is the audible frequency
- **60.** Why Ultrasound is beneficial in the Medical Field?
- **61.** What is meant by reflection of
- light?
 62. State the laws of reflection.
- **63.** Define critical angle.
- 64. What is meant by Shortsightness?
- **65.** Define electronic field.

- **66.** What is electric field intensity? Write its unit.
- 67. What is meant by potential difference?
- **68.** Define resistance and write its
- **69.** Define kilowatt hour.
- **70.** What is meant by thermionic emission?
- 71. What are the magnitudes of voltage and current for the filament of a tungsten bulb? Briefly explain.
- **72.** What is the difference between ADC and DAC?
- 73. Define natural radioactivity.
- 74. Write the definition of nuclear transmutation.
- 75. Define transverse waves and longitudinal waves.
- 76. Write two effects of noise on human health.
- 77. What is the difference between musical sound and noise?
- **78.** What is a light pipe?
- 79. Explain the difference between variable and fixed capacitors.
- **80.** State the difference between conductors and insulators.
- **81.** If resistors of $6k\Omega$ and $4k\Omega$ are connected in series with a 10Vbattery, what will be the equivalent resistance?
- **82.** State the right-hand rule for a straight wire.
- 83. Define OR gate and construct its truth table.
- 84. Define CPU. Why is it called brain of computer?
- 85. What is the difference between data and information?
- **86.** Explain the difference between primary memory and secondary memory.
- 87. Define time period and
- frequency.
 88. What is the difference between vibration and amplitude in terms of simple pendulum?
- **89.** What is sound quality?
- 90. Find the frequency of a sound wave when the speed of the sound is 340 m/s and the wavelength is $0.5 \, \text{m}.$
- **91.** Define refraction of light.
- **92.** Write the laws of refraction.
- 93. Define capacitance.
- 94. Define Farad.95. If a 0.5C charge passes through a wire in 10s, how much current flows in the wire?
- 96. Define Ohm. Write its symbol.
- 97. Name two protective devices for safe use of electricity.
- **98.** What is logic operation? Name its two types.
- 99. How is the NOT Gate use as inverter?
- **100.** Define Photophone.

Class Test # 1 Physics-10 SYLLABU. 1. Choose the correct answer.			Physics - 10
1. Choose the correct answer.	S: Unit: 10	Objective Type	Time: 12 Min. Marks: 10
		, ,,	
(i) The formula of Hooke's law	is:		
	_	. X	5 -
A $F = kx$ B $F = -k$	х (· K = _	D x = -Fk
(ii) If the time period is given th	en freaue	ncv is calcula	ted as:
A $f = 1/T$ B $f = 2/T$		C f = 3/T	D $f = 4/T$
(iii) Shock absorbers vehicle are	e example	es of:	
A Simple harmonic motion C Damped motion		I inear motion	ion
(iv) In electromagnetic waves	are pe	rpendicular to	each other.
A Electric field B Magnet	tic field C	Gravitational f	ield D Both A and B
(v) Longutudinal waves move f	aster in:	Dath A and D	D. In polido
A In gases B In liquid (vi) Which of the following qua	ntities do	es not change	during refraction of
light?	intities do	cs not change	during remaction of
A Its speed B Its direct	ction (Its frequency	D Its wavelength
(vii) Waves transfer: A energy B frequer		· · · · · · · · · · · · · · · · · · ·	D. valasitu
(viii) Which of the following cha	1Cy ractoristic	wavelength	D velocity s independent of the
others?	actoristic	3 of a wave i	3 macpendent of the
A speed B frequer	ncy C	amplitude	D wavelength
(ix) The unit of wavelength is ed	ual to:		D. Dist
A Time B Freque (x) The time period of a simple	nendulun	> Speed of length one	D Distance
A 1.99s B 2.11s	Cildulali	1.89s	D 1.88s
×			
Class Test # 2 Physics-10 SYLLABU	S: Unit: 11	Objective Type	Time: 12 Min. Marks: 10
1. Choose the correct answer.			
(i) One Bel is equal to:			_
A 5dB B 10dB			D 20dB
A 5dB B 10dB (ii) Intensity of sound of rustlin	g leaves i	s:	
A 5dB B 10dB (ii) Intensity of sound of rustlin A 10 ⁻¹⁰ Wm ⁻² B 10 ⁻¹¹ W	g leaves i /m ⁻² (s: 2 10 ^{–12} Wm ^{–2}	
A 5dB B 10dB (ii) Intensity of sound of rustlin A 10 ⁻¹⁰ Wm ⁻² B 10 ⁻¹¹ W (iii) The sensation of sound per	g leaves i m ⁻² (sists in o	s: C 10 ⁻¹² Wm ⁻² ur mind:	D 10 ⁻¹⁸ Wm ⁻²
A 5dB B 10dB (ii) Intensity of sound of rustlin A 10 ⁻¹⁰ Wm ⁻² B 10 ⁻¹¹ W (iii) The sensation of sound per A 0.01 s B 0.1 s	g leaves i /m ⁻² (sists in o	s: C 10 ⁻¹² Wm ⁻² ur mind: C 0.02 s	
A 5dB B 10dB (ii) Intensity of sound of rustlin A 10 ⁻¹⁰ Wm ⁻² B 10 ⁻¹¹ W (iii) The sensation of sound per A 0.01 s B 0.1 s (iv) The speed of sound at 25°C	g leaves i	s: C 10 ⁻¹² Wm ⁻² ur mind: C 0.02 s coom is:	D 10 ⁻¹⁸ Wm ⁻² D 0.2 s
A 5dB B 10dB (ii) Intensity of sound of rustlin A 10 ⁻¹⁰ Wm ⁻² B 10 ⁻¹¹ W (iii) The sensation of sound per A 0.01 s B 0.1 s (iv) The speed of sound at 25°C A 320ms ⁻¹ B 330ms	g leaves i /m ⁻² (sists in or (in air or I	s: C 10 ⁻¹² Wm ⁻² ur mind: C 0.02 s room is: C 346ms ⁻¹	D 10 ⁻¹⁸ Wm ⁻² D 0.2 s D 350ms ⁻¹
A 5dB B 10dB (ii) Intensity of sound of rustlin A 10 ⁻¹⁰ Wm ⁻² B 10 ⁻¹¹ W (iii) The sensation of sound per A 0.01 s B 0.1 s (iv) The speed of sound at 25°C A 320ms ⁻¹ B 330ms (v) The level of noise recomme	g leaves i /m ⁻² (sists in or (in air or I	s: C 10 ⁻¹² Wm ⁻² ur mind: C 0.02 s room is: C 346ms ⁻¹	D 10 ⁻¹⁸ Wm ⁻² D 0.2 s D 350ms ⁻¹
A 5dB B 10dB (ii) Intensity of sound of rustlin A 10 ⁻¹⁰ Wm ⁻² B 10 ⁻¹¹ W (iii) The sensation of sound per A 0.01 s B 0.1 s (iv) The speed of sound at 25°C A 320ms ⁻¹ B 330ms (v) The level of noise recommodured by the sense of sound at 25°C A 320ms ⁻¹ B 330ms	g leaves i m ⁻² (sists in or in air or r ended in	s: 2 10 ⁻¹² Wm ⁻² ur mind: 2 0.02 s com is: 2 346ms ⁻¹ most countrie	D 10 ⁻¹⁸ Wm ⁻² D 0.2 s D 350ms ⁻¹ s over an eight hour
A 5dB B 10dB (ii) Intensity of sound of rustlin A 10 ⁻¹⁰ Wm ⁻² B 10 ⁻¹¹ W (iii) The sensation of sound per A 0.01 s B 0.1 s (iv) The speed of sound at 25°C A 320ms ⁻¹ B 330ms (v) The level of noise recommody workday is usually. A 82-90 dB B 83-90 dB	g leaves in one of the control of th	s: 2 10 ⁻¹² Wm ⁻² ur mind: 2 0.02 s com is: 2 346ms ⁻¹ most countrie	D 10 ⁻¹⁸ Wm ⁻² D 0.2 s D 350ms ⁻¹
A 5dB B 10dB (ii) Intensity of sound of rustlin A 10 ⁻¹⁰ Wm ⁻² B 10 ⁻¹¹ W (iii) The sensation of sound per A 0.01 s B 0.1 s (iv) The speed of sound at 25°C A 320ms ⁻¹ B 330ms (v) The level of noise recommon workday is usually. A 82-90 dB B 83-90 c (vi) Which is an example of long	g leaves in or in air or i	s: C 10 ⁻¹² Wm ⁻² ur mind: C 0.02 s coom is: C 346ms ⁻¹ most countrie C 84-90 dB vaves?	D 10 ⁻¹⁸ Wm ⁻² D 0.2 s D 350ms ⁻¹ s over an eight hour
A 5dB B 10dB (ii) Intensity of sound of rustlin A 10 ⁻¹⁰ Wm ⁻² B 10 ⁻¹¹ W (iii) The sensation of sound per A 0.01 s B 0.1 s (iv) The speed of sound at 25°C A 320ms ⁻¹ B 330ms (v) The level of noise recommody workday is usually. A 82-90 dB B 83-90 dB	g leaves in one of the control of th	s: C 10 ⁻¹² Wm ⁻² ur mind: C 0.02 s coom is: C 346ms ⁻¹ most countrie C 84-90 dB vaves? C Radio waves	D 10 ⁻¹⁸ Wm ⁻² D 0.2 s D 350ms ⁻¹ s over an eight hour D 85-90 dB D Water waves
A 5dB B 10dB (ii) Intensity of sound of rustlin A 10 ⁻¹⁰ Wm ⁻² B 10 ⁻¹¹ W (iii) The sensation of sound per A 0.01 s B 0.1 s (iv) The speed of sound at 25°C A 320ms ⁻¹ B 330ms (v) The level of noise recommon workday is usually. A 82-90 dB B 83-90 c (vi) Which is an example of long A Sound waves B Light w	g leaves in one of the control of th	s: C 10 ⁻¹² Wm ⁻² ur mind: C 0.02 s coom is: C 346ms ⁻¹ most countrie C 84-90 dB vaves? C Radio waves	D 10 ⁻¹⁸ Wm ⁻² D 0.2 s D 350ms ⁻¹ s over an eight hour D 85-90 dB D Water waves
A 5dB B 10dB (ii) Intensity of sound of rustlin A 10 ⁻¹⁰ Wm ⁻² B 10 ⁻¹¹ W (iii) The sensation of sound per A 0.01 s B 0.1 s (iv) The speed of sound at 25°C A 320ms ⁻¹ B 330ms (v) The level of noise recommon workday is usually. A 82-90 dB B 83-90 c (vi) Which is an example of long A Sound waves B Light w (vii) The loudness of a sound is A Frequency B Period (viii) Principle of stethoscope de	g leaves in one of the control of th	s: C 10 ⁻¹² Wm ⁻² ur mind: C 0.02 s coom is: C 346ms ⁻¹ most countrie C 84-90 dB vaves? C Radio waves sely related to C Amplitude which proces	D 10 ⁻¹⁸ Wm ⁻² D 0.2 s D 350ms ⁻¹ s over an eight hour D 85-90 dB D Water waves its: D Wavelength s of sound?
A 5dB B 10dB (ii) Intensity of sound of rustlin A 10 ⁻¹⁰ Wm ⁻² B 10 ⁻¹¹ W (iii) The sensation of sound per A 0.01 s B 0.1 s (iv) The speed of sound at 25°C A 320ms ⁻¹ B 330ms (v) The level of noise recommon workday is usually. A 82-90 dB B 83-90 c (vi) Which is an example of long A Sound waves B Light w (vii) The loudness of a sound is A Frequency B Period (viii) Principle of stethoscope de A Transmission B Reflect	g leaves in on the sists in the sists in on the sists in the sists in on the sists in our	s: C 10 ⁻¹² Wm ⁻² ur mind: C 0.02 s com is: C 346ms ⁻¹ most countrie C 84-90 dB vaves? C Radio waves cely related to C Amplitude which proces C Absorption	D 10 ⁻¹⁸ Wm ⁻² D 0.2 s D 350ms ⁻¹ s over an eight hour D 85-90 dB D Water waves its: D Wavelength s of sound? D Refraction
A 5dB B 10dB (ii) Intensity of sound of rustlin A 10 ⁻¹⁰ Wm ⁻² B 10 ⁻¹¹ W (iii) The sensation of sound per A 0.01 s B 0.1 s (iv) The speed of sound at 25°C A 320ms ⁻¹ B 330ms ⁻¹ (v) The level of noise recomme workday is usually. A 82-90 dB B 83-90 d (vi) Which is an example of long A Sound waves B Light w (vii) The loudness of a sound is A Frequency B Period (viii) Principle of stethoscope de A Transmission B Reflect (ix) The property of sound by v	g leaves in on the sists in the sist in the sists in the sist in the s	s: C 10 ⁻¹² Wm ⁻² ur mind: C 0.02 s com is: C 346ms ⁻¹ most countrie C 84-90 dB vaves? C Radio waves cely related to C Amplitude which proces C Absorption	D 10 ⁻¹⁸ Wm ⁻² D 0.2 s D 350ms ⁻¹ s over an eight hour D 85-90 dB D Water waves its: D Wavelength s of sound? D Refraction
A 5dB B 10dB (ii) Intensity of sound of rustlin A 10 ⁻¹⁰ Wm ⁻² B 10 ⁻¹¹ W (iii) The sensation of sound per A 0.01 s B 0.1 s (iv) The speed of sound at 25°C A 320ms ⁻¹ B 330ms (v) The level of noise recommon workday is usually. A 82-90 dB B 83-90 d (vi) Which is an example of long A Sound waves B Light w (vii) The loudness of a sound is A Frequency B Period (viii) Principle of stethoscope de A Transmission B Reflect (ix) The property of sound by we same loudness and pitch is	g leaves in on the sists in the sist in the s	s: 2 10 ⁻¹² Wm ⁻² ur mind: 2 0.02 s com is: 346ms ⁻¹ most countrie 2 84-90 dB vaves? 2 Radio waves cely related to 2 Amplitude which proces 2 Absorption can distinguis	D 10 ⁻¹⁸ Wm ⁻² D 0.2 s D 350ms ⁻¹ s over an eight hour D 85-90 dB D Water waves its: D Wavelength s of sound? D Refraction sh two sounds of the
A 5dB B 10dB (ii) Intensity of sound of rustlin A 10 ⁻¹⁰ Wm ⁻² B 10 ⁻¹¹ W (iii) The sensation of sound per A 0.01 s B 0.1 s (iv) The speed of sound at 25°C A 320ms ⁻¹ B 330ms ⁻¹ (v) The level of noise recomme workday is usually. A 82-90 dB B 83-90 d (vi) Which is an example of long A Sound waves B Light w (vii) The loudness of a sound is A Frequency B Period (viii) Principle of stethoscope de A Transmission B Reflect (ix) The property of sound by v	g leaves in on the sists in the sist in	s: C 10 ⁻¹² Wm ⁻² ur mind: C 0.02 s com is: C 346ms ⁻¹ most countrie C 84-90 dB vaves? C Radio waves cely related to C Amplitude which proces C Absorption	D 10 ⁻¹⁸ Wm ⁻² D 0.2 s D 350ms ⁻¹ s over an eight hour D 85-90 dB D Water waves its: D Wavelength s of sound? D Refraction

Al-Razi Assessment Papers	2			Physic	cs - 10
Class Test # 1 Physics-10 SY	LLABUS: Unit: 1	Subjective Type	Time	: 28 Min.	Marks: 30

2. Give short answers to the following questions.

 $(10 \times 2 = 20)$

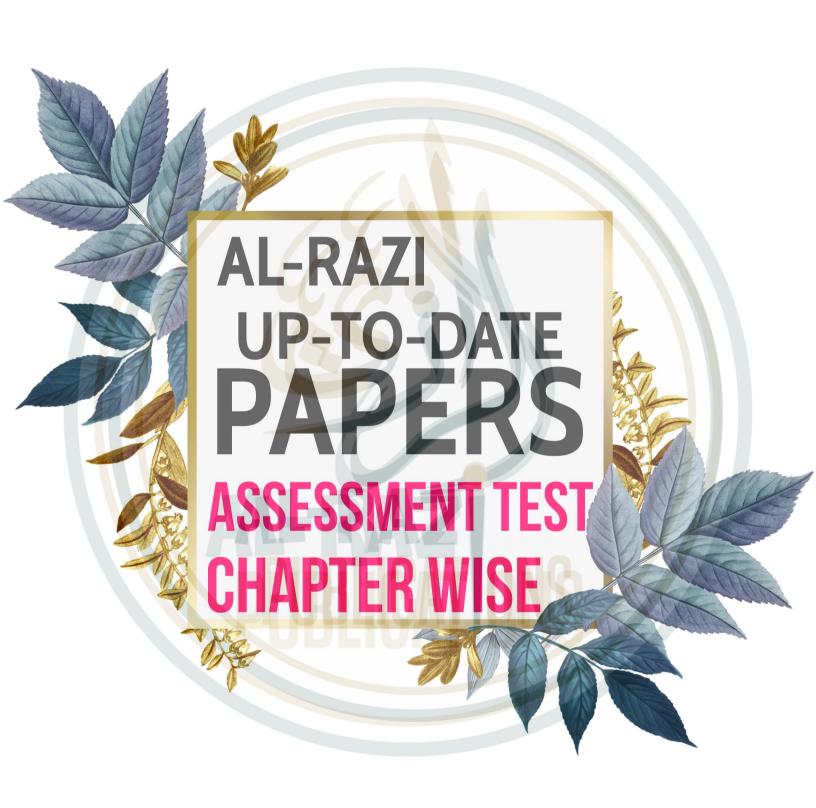
- (i) Explain Hooke's law.
- (ii) What is meant by time period?
- (iii) Define damped oscillations. Give an example from daily life.
- (iv) How can you define a wave?
- (v) What is called compression?
- (vi) Define transverse wave and give an example.
- (vii) Prove: $v = f\lambda$
- (viii) Define refraction of waves.
- (ix) A wave moving on a slinky has a frequency of 4Hz and a wavelength of 0.4m. Find the speed of the wave.
- (x) What is meant by diffraction of wave?
- 3. Attempt the following questions.

 $(2 \times 5 = 10)$

- (i) Distinguish between longitudinal and trasverse waves with suitable examples.
- (ii) Find the time periods of a simple pendulum of 1 metre length, placed on Earth and on Moon. The value of g on the surface of Moon is 1/6th of its value on Earth, where g_e is 10ms⁻².

%-----

Class Test # 2 Physics-10 SYLLABUS: Unit: 11 Subjective Type Time: 28 Min. Marks: 30

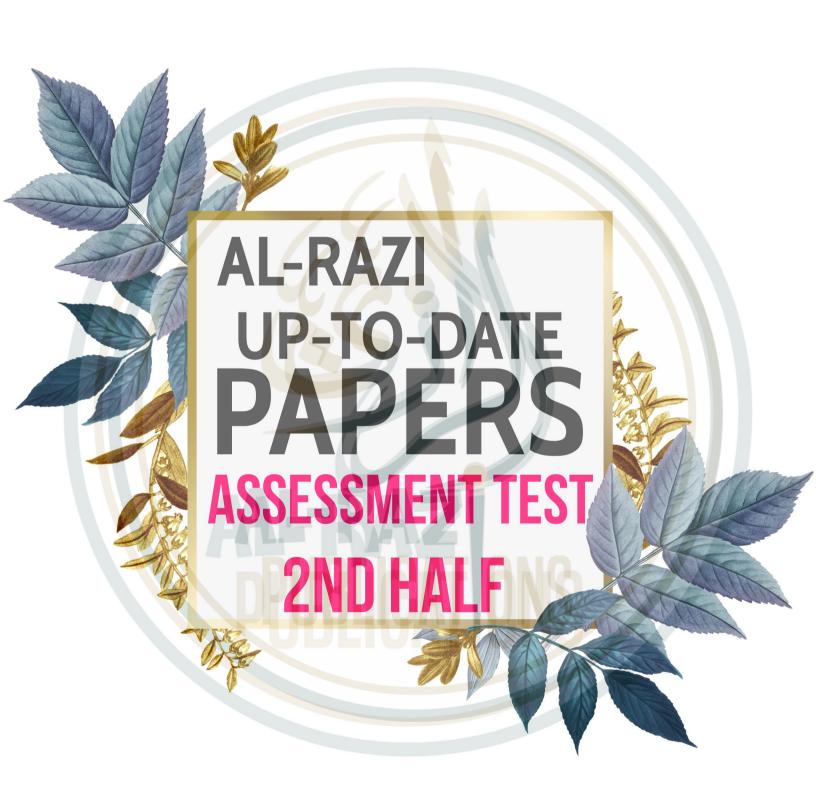

2. Give short answers to the following questions.

 $(10 \times 2 = 20)$

- (i) What is a tuning fork?
- (ii) Define Loudness.
- (iii) What is meant by resonance of waves?
- (iv) Find the intensity level of the faintest audible sound when the intensity is 10^{-12}Wm^{-2} .
- (v) Which equation is used to find the speed of sound?
- (vi) Briefly explain why noise is harmful to health?
- (vii) Define acoustic protection.
- (viii) What is range of sound audible to the human ear?
- (ix) Define ultrasound and describe one application.
- (x) How is the depth of water in the ocean measured?
- 3. Attempt the following questions.

 $(2 \times 5 = 10)$

- (i) Write a note on characteristics of sound.
- (ii) If at Anarkali Bazar Lahore, intensity level of sound is 80 dB, what will be the intensity of sound there?


Al-	Razi Assessment Paj	pers 9		Physics - 10
Asse	essment Chapterwise To	est 1 Syllabus: Unit 1	Objective Type	Time: 15 Min. Marks: 12
Q1.	Choose the corre	ct option.		1 × 12 = 12
1.	<u> </u>	ind the time period		
	$A T = 2\pi \sqrt{\frac{\ell}{g}}$	$B T = 2\pi \sqrt{\frac{g}{\ell}}$	$C T = 2\pi \sqrt{\frac{m}{k}}$	D $T = 2\pi \sqrt{\frac{k}{m}}$
2.	Earthquake prod	uces waves throu	gh the crust of th	ne earth in the form
	of:			
	A Seismic waves	B Sound waves	C Light waves	D Radio waves
3.	An example of lo	ngitudinal waves i	s:	
	A Sound wave	B Light wave	C Radio wave	D Water wave
4.	Which of the follo	owing is an examp	ole <mark>of si</mark> mple harm	onic motion?
		imple pendulum		_
		the earth on its axi		
5.		ctric and magnetic	c field in electrom	agnetic waves is at
	an angle of:		3 / 1	
		B Perpendicular		D 180°
6.		electromagnetic w		
_	A Speed	/	C Amplitude	
7.		brations per seco		
•	A Frequency			D Displacement
8.				r their wave length.
	A remains the said	me	B becomes zero	
9.		a <mark>n Huyge</mark> ns inven	D Decreases	ack2
Э.	A 1656	B 1756	C 1856	D 1956
10		ula for simple per		1330
		_		[k
	A $T = 2\pi \sqrt{\frac{9}{\ell}}$	B $T = 2\pi \sqrt{\frac{\ell}{g}}$	$T = 2\pi \sqrt{\frac{m}{k}}$	D $T = 2\pi \sqrt{\frac{\kappa}{m}}$
11.	The unit of spring	g constant is:		
	$A \frac{N}{m^2}$	B_m^N	$C \frac{N}{C}$	D^{m^2}/N
12.	What does the en	ergy of a wave de	pend on?	
	A Frequency	B Time period	C Amplitude	D Distance

A1.	-Razi	Assessment Papers		10			Physic	cs - 10
		ent Chapterwise Test 1	Syllabus: Ur	nit 10	Subjective Type	Time	: 1:45 Min.	Marks: 48
				tion -				
		te short answers t		(5) q	uestions.		(5	× 2 = 10)
i. 		ne simple harmoni	c motion.					
ii. 		ne restoring force.	-	: :4				
iii. iv.		at is the reciprocal of the time period				lone	ath ic 1 (m while
ıv.		0.0ms ⁻²	or a simple	pen	dululli wilose	ieni	gui is i.d	Jili Willie
٧.								
vi.								
vii.		ne reflection of way	_					
		ne ripple tank.						
Q3.		te short answers t					(5	\times 2 = 10)
i. 		e two characteristic	s of simple	harm	onic motion.			
ii. :::		ne vibration.	f alastroma	an otio	waves			
iii. iv.		ne four examples o				neve	area waw	26
v. v.	and the second s							
vi.		I the speed of wave	es when the	e freq	uency is 2 Hz	and	the wave	elength is
	0.1	•						3.
		at is meant by diffra						
		ne longitud <mark>in</mark> al wav			- · ·			
		te short an <mark>swe</mark> rs t				A	(5	× 2 = 10)
i. ::		ne simple pendulur					10	
ii. iii.		at is the relationship ne amplitude.	between if	eque	ncy and time p	eriod	1?	
ııı. iv.		ne mechanical way	es and elec	trom:	annetic waves			
v. V.		e the definition and						
vi.		e length of a simpl				ill be	e the cha	nge in its
	time	period?						
		e time period of a s						uency.
viii.	Defi	ne damped oscillat				y life) .	
Nata	A4	townt TWO much		ion -	II)		(2)	0 40\
		tempt TWO questi What is simple		o mo	tion2 What	ara		× 9 = 18)
QJ.	(a)	conditions for a l						Cessary 4
	(b)	A pendulum of le						
	()	The period of the						
		surface of the mo	oon?					5
Q6.		Explain types of						4
	(b)					on i	n two s	_
	(-)	Calculate its leng						5
ų/.	(a)	What is ripple ta tank.	nk? write	tne c	onstruction a	nd \	working	of ripple
	(b)	Water waves in	a shallow o	dish a	are 6.0 cm lor	าต.	At one n	•
	(~)	water moves up				_	-	
		(a) What is the sp						
		(b) What is the pe						


Al	-Razi Assessment Papers	25		Physics - 10		
As	ssessment First Half Test 9	Syllabus: Unit 10	-13 Objective Type	Time: 15 Min. Marks: 12		
Q1.	Choose the correct of	ption.		1 × 12 = 12		
1.	If the length of simple	e pendulum is	doubled then its t	ime period will be:		
	A √2T B	$\frac{T}{\sqrt{2}}$	C 2T	$D \frac{T}{2}$		
2.	Radio waves are:	V –		_		
		X-ray	CElectromagnetic	D Mechanical		
3.	If the mass of the bo	-				
	period of the pendulum's motion will:					
	A Be increased by a		B Remain the sar	ne		
	C Be decreased by a		D Be decreased b	by a factor of 4		
4.	Sound level in dB ca	n be stated as:				
	A 10log I/lo dB B	log I/lo dB	C 10log lo/l dB	D log lo/l dB		
5.	How does sound trav	el from its sou	rce to your ear?			
	A by change in air pro	essure	B by vibration of s	string or cord		
	C by electromagnetic	waves	D by infrared way	res		
6.	The depth of water c	<mark>an be</mark> measure	d by			
	A Infrasonic		B Ultrasonic			
	C Both A and B		D None of the ab	ove		
7.	Types of spherical m	irrors is/are:				
	A 2 B	4	C 6	D 8		
8.	Snell's law is:					
	$A n = \frac{\sin \hat{i}}{\sin \hat{r}} $ B	$n = \frac{\sin \hat{r}}{\sin \hat{i}}$	$C n = \sin \hat{r}$	$D n = \sin \hat{i}$		
9.	The variation of foca	l length of eye	lens to form a sh	arp image on retina		
	is called:					
	A Modification B	Induction	C Accommodatio	n D Distinct vision		
10.	SI unit of electric fiel	d intensity is:				
	A NC ⁻¹ B	$N^{-1}C$	$C \frac{N^{-1}}{C}$	$D \frac{C}{N^2}$		
11.	1 nano Farad is equa	Lto	C	IN		
		10. 10 ⁻³ F	C 10 ⁻⁶ F	D 10 ⁻¹² F		
12	How many types of c		O 10 1	2 10 1		
	A 2 B	_	C 4	D 5		

-						
Al	-Razi Assessment Papers	1	26	1		Physics - 10
As	ssessment First Half Test 9	_			e Time	e: 1:45 Min. Marks: 48
00	Muita abaut anawaya t	•	tion ·	•		(F + 2 - 40)
Q2. i.	Write short answers t	-	(5) q	uestions.		$(5 \times 2 = 10)$
ı. ii.	How can you define a What is called compres					
iii.	A wave moving on a		a fred	nuency of 4H	z and	d a wavelength of
••••	0.4m. Find the speed of	•		quoney or in	Z GIIC	. a wavelength of
iv.	Explain Hooke's law.					
٧.	What is meant by time	period?				
vi.	Define refraction of wa					
vii.	What is stethoscope?					
viii.	What is meant by zero	bell?				
	Write short answers t					$(5 \times 2 = 10)$
i.	Explain the difference by					
ii.	Which of the solids an	id liquids ha	as the	highest spec	ed of	sound waves and
iii.	why? State the factors of har	mloog lovel	of no	ioo		
iv.	What is meant by the a					
۷.	What is a compound m		-	_	to find	Lits magnification
vi.	Write two uses of lense		VVIIIC	the formala	10 11110	no magninoation.
	What is meant by the p		us of	convex lenses	s and	concave lenses?
	What is meant by prisn	•				
	Write short answers t		(5) q	uestions.		$(5 \times 2 = 10)$
i.	What is meant by critic	al angle?				
ii.	What is the mirror form	ula? Write	ts ma	thematical for	rm.	
iii.	How can the capacitan					
iv.	Why the parallel plate					
٧.	Write the factors affect	_	_		of a	capacitor.
vi.	What do you know abo			r cleaners?		
vii.	If $V = 50V$ and $C = 100$ State two uses of elect		= {			
VIII.	State two uses of elect		tion -	11)		
Note	e: Attempt TWO questi		tion -	",		
	(a) Prove that the r		simp	le pendulun	n is s	imple harmonic
	motion.					4
	(b) A sound wave has	a frequen	cy of	2 kHz and w	avele	ngth 35 cm. How
	long will it take to trav	vel 1.5 km?)			5
Q6.	(a) What is total interi	nal reflection	n? E	xplain with ra	ay dia	gram. 4
	(b) A convex lens of	focal leng	th 6	cm is to be	used	to form a virtual
	image three times t	he size of	the	object. Whe	ere m	ust the lens be
_	placed?	_			_	5
Q7.	(a) Explain one applic					•
	(b) A capacitor holds			_		
	9 volt battery. Calcula	ite capacita	ance (of the capaci	tor.	5

Al	-Razi Assessment Papers	2	7		Physics - 10
Asse	essment Second Half Test 10	Syllabus: Unit 1	4-18	Objective Type	Time: 15 Min. Marks: 12
Q1.	Choose the correct o	ption.			1 × 12 = 12
1.	If a charge of 0.5C page	asses throug	gh a	wire in 10s, t	hencurrent is
	flowing in the wire.				
	A 0.05 A		В	0.5 A	
	C 5 A		D	20 A	
2.	When resistors are	connected in	ı se	ries, the curre	ent flowing through
	them is:				
	A Different		В	Zero	
	C Equal		D	None	
3.	The study of magneti	c effects of c	urre	nt is called:	
	A Electrostatics		В	Magnetism	
	C Electricity		D	Electromagne	tism
4.	For an ideal transform	ner:			
	$AP_p = P_s$		В	$P_p < P_s$	
	$CP_p > P_s$		D	$P_p \neq P_s$	
5.	Number of input/inpu	its of NOT op	era	tion is/are:	
	A 1			2	
	C 3		D	4	
6.	The Output of NAND	gate is '0' wh	en:	/ /]	
	A both of its inputs are	e '0'	В	both of its inpu	ıts are '1'
	C any of its inputs are	'0'	D	any of its input	s are '1'
7.	When did Graham Be	II make the s	imp	le telephone?	
	A 1876		В	1886	
	C 1870		D	1867	
8.	One byte is equals to				
	A 10 bits		В	8 bits	
	C 6 bits		D	4 bits	
9.	Information can be do	ownloaded fr	om l	Broadband:	
	A in one minute		В	in one second	
	C in one day		D	in two days	
10.	The half-life of poloni	um ²¹⁰ ₈₄ Po is:			
	A 140 days		В	130 days	
	C 145 days		D	138 days	
11.	The half-life of a cert	ain isotope i	s on	e day. What is	s the quantity of the
	isotope after 2 days?				
	A one-half		В	one-quarter	
	C one-eight			none of these	
12.	The number of protor	ns in a nuclid	e_{6}^{13}	X is:	
	A 3			10	
	C 8		D	6	

Δl	-Razi Assessment Papers	1:	28			Physic	cs - 10
_	essment Second Half Test 10			Subjective	Tyne Ti		
ЛЭЭС	essilient Second Hair Test To	(Secti		_	Турс	illie. 1.43 Willi.	IVIAI KS. 40
Q2.	Write short answers t	•		•		(5	× 2 = 10)
i.	Define resistance and						
ii.							
iii.	instead of series circuit State two causes of sh						
iv.	What is meant by earth						
v.	How many watt hours a		000	oules?			
vi.	What is meant by soler				act like	e a magnet	?
vii.	Define mutual induction	٦.					
	What is a transformer?						
	Write short answers t	o any FIVE (5) qı	uestions.		(5	× 2 = 10)
i.	Define kilo-watt hour.	on of the cor	000	in diacta?			
ii. iii.	What does the brightne Why does the picture				agnet	ie brought	near the
	television, explain the r	_	4 VVIII	CIT THE III	agrici	is brought	near the
iv.	Write the use of logic g						
٧.	Define NOT gate and o		ol.				
vi.	Define Boolean algebra						
vii.							า.
	List the components of				tion sy		v 2 40\
i.	Write short answers to What is meant by proceedings.			lestions.		(5)	× 2 = 10)
ii.	Define optical fiber.	eddie III (OBI	0):				
iii.	Floppy disk or hard dis	k is better for	stor	ing data?	Explai	n the reaso	n.
iv.	What is the difference		nic n	umbe <mark>r a</mark> n	d atom	nic mass?	
٧.	Who discovered radioa						
	What is the difference	between natu	iral a	and artificia	al radio	oactivity?	
	What is a photon? Define nuclear fusion.						
VIII.	Define nuclear rusion.	(Secti	on -	II)			
Note	e: Attempt TWO questi						
	(a) Explain Ohm's law		s lin	n <mark>itati</mark> ons?	•		4
	(b) A transformer is n						
	supply. If there are 20		the	primary o	oil, th	en find the	_
-	of turns on the secon	•		P . P		14. 41.4-11	5
Q6.	(a) What is NOR gate (b) Half-life of a radio			_			
	rate is 368 counts p						
	reaches 23 counts pe	•	11110	the time	101	willell cou	5
Q7.	(a) What is Electronic		dov	vn its thre	e adv	antages.	4
	(b) The activity of car					_	sh
	wood — is in some	tition Doto	nina	the age of	of tha	ach	E
	wood. $\frac{1}{8}$ is in compe	udon. Deterr	ııırıe	ine age C	n the	a511.	5

Al	-Razi Assessment Paj	pers :	29		Physics - 10
Ass	essment Second Half Te	st 10 Syllabus: Unit 1	10-18	Objective Type	Time: 15 Min. Marks: 12
Q1.	Choose the corre	ect option.			1 × 12 = 12
1.	If the time period	is given then fre	quei	ncy is calculat	ed as:
	A $f = 1/T$	B f = 2/T	С	f = 3/T	D f = 4/T
2.	Which of the following	owing quantities	doe	es not change	during refraction of
	light?				
	A Its speed	B Its direction	С	Its frequency	D Its wavelength
3.	Intensity of sound	d of rustling leav	es is	s:	
	A 10 ⁻¹⁰ Wm ⁻²	B 10 ⁻¹¹ Wm ⁻²	С	10 ⁻¹² Wm ⁻²	D 10 ⁻¹⁸ Wm ⁻²
4.	Speed of sound f	or steel at 25°C:			
	A 3880 m/s	B 5950 m/s	С	6040 m/s	D 5960 m/s
5.	The speed of ligh	t in air is approx	imat	ely equal to m	s ⁻¹ .
	A 2×10 ⁸	B 3×10 ⁶	C	3×10 ⁸	D 3×10 ⁹
6.	The variation of f	oc <mark>al l</mark> ength of ey	e lei	ns to form a sl	narp image on retina
	is called:				
	A Modification		В	Induction	
	C Accommodation	n	D	Distinct vision	
7.	The S.I unit of ca	pacitance of a ca	paci	itor is:	
	A Volt (V)	B Ampere (A)	C	Farad (F)	D Newton (N)
8.	Unit of electric po	ower is:			
	A watt	B ampere	С	joule	D volt
9.	The practical app	olication:			
	A A.C generator	B D.C generato	r C	Transformer	D Inductor
10.	Arithmetic symbo	ol for AND operat	tion:		
	A X = A+B	B X = A+B	С	X = A.B	D X = A.B
11.	Sound waves are	amplified by:			
	A Receiver	B Transmitter	С	Amplifier	D Recorder
12.	The half-life of Ur	ranium $^{235}_{92}\mathrm{U}$ is:			
	A 5 x 10 ⁸ Year	B 6 x 10 ⁸ Year	С	7.1x10 ⁸ years	D 8 x 10 ⁸ years

Al	-Razi Assessment Papers		30		Physics - 10	
	essment Second Half Test 10	Syllabus: Uni	t 10-18	Subjective Type	1 1	
		(Sec	ction ·	· I)		
Q2.	Write short answers t	o any FIVE	(5) q	uestions.	$(5 \times 2 = 10)$	
i.	How shock absorber d	amp vibratio	on?			
ii.	Define sound waves ar		exam	ole.		
iii.	State laws of reflection	•				
iv.	How does electrostatic induction differ from charging by friction?					
٧.	What is ammeter? How					
vi. 	Why magnetic poles ca				ic charges?	
vii.	What is the cause of the					
	What are browsers? G				(5 0 40)	
	Write short answers t				$(5 \times 2 = 10)$	
i. ii.	The amount of energy Define pitch and quality		by a	wave depends	upon which factors?	
iii.	Define principal axes a		ath			
iv.	What is affect of distan		_	orce? Write it		
٧.	Write the difference be				e m f	
vi.	Explain Faraday's law					
vii.	Define Boolean algebra		.3	()		
	Write any two properties		3) pai	ticles.		
	Write short answers t				$(5 \times 2 = 10)$	
i.	Define electromagnetic	waves.				
ii.	How can an echo be he	eard more t	han o	nce?		
iii.	What is the refractive in	ndex of ice	and w	ater?		
iv.	Define electric lines of	force.				
٧.	What is a thermister? \	Nrite one us	se of i	t.		
vi.	Define ideal transforme	∍r.				
vii.	What is OR gate? Write					
viii.	Describe four Hazards					
Marc	Attomat TMO	,	tion -	II)		
	e: Attempt TWO quest		tha a	onetruction o	nd working of ripple	
QS.	(a) What is ripple tank.	ik? write	the c	onstruction a	and working or ripple	
	(b) A doctor counts	: 72 hearth	eate	in 1min Calcu		
	period of the heartbeats		cais	iii Tiiiiii. Galee	5	
Q6.	(a) What is telescope		s wo	rking and mad		
	(b) A capacitor holds	_				
	9 volt battery. Calcula					
Q7.	(a) Explain the use of	f logic gate	s as	safety alarm.	4	
	(b) Cobalt-60 is a rad	lioactive el	emen	t with half-life	of 5.25 years. What	
	fraction of the origina	ıl sample w	ill be	left after 26 ye	ears? 5	

ہمت کرے انسان تو کیا کچھ نہیں مکن پانی سے ہی بنتی ہے تصویرِ چمن

ميرك اخانات كاياى ك ليدالزى اليلك ويالي معايده كالمنات

(الزيخ پبلی کیشنز محض ایک ادارہ نہیں بلکہ ایک تحریک ہے۔ جس کی کتب طلباء کو امتحان میں 100 فیصد کا میا بی تو دلاتی بیں ساتھ ہی ان کی آئندہ زندگی میں کا میا بی کے راستے بھی ہموار کرتی ہیں۔ (الزیخ پبلی کیشنز نے جدید تعلیمی نقاضوں کو مدنظر رکھتے ہوئے اپنی تمام گتب کو BLOOM TAXONOMY کے لیولز سے ہم آہنگ کیا ہے۔ یتحریک طلباء کے روشن مستقبل کے سفر کی نوید ہے۔

(يَمَا بَيِد) الْمُحْرِقِي الْمُحْرِقِي الْمُحْرِقِي الْمُحْرِقِي الْمُحْرِقِي الْمُحْرِقِينِ الْمُحْرِقِينِ

🗶 پیریڈوائز پیپرز 🧪 چیپڑوائز پیپرز 💉 فرسٹ ہاف ئب پیپرز 🔪 سینڈ ہاف ئب پیپرز 💎 فل ئبک پیپرز

آپ ۔ ٹو۔ڈیٹ پیپرز کی تاریخ میں پہلی مرتبہ محترم اسا تذہ کرام کی ڈیمائڈ اور طلبہ کی تیاری کے لیے مابا تذہ کرام کی ڈیمائڈ اور طلبہ کی تیاری کے لیے مابا تذہ کرام کو پیپرز تیار کرکے فوٹو کا پی کروانا پڑتے تھے۔ مابا تذہ کرام کو پیپرز تیار کرکے فوٹو کا پی کروانا پڑتے تھے۔ (والحق الور چھسے دولوں کیا ہے گے امتحان میں 100 فیصد کامیا بی اور آگا گریڈ کے صول کے لیے کہا گئے ہے۔ (ادارہ آپ کی کامیا بی کے لیے دُما گوہے)

For Chapter Wise, Half Book & Full Book Papers Scan QR Code

Rs. 280/-

PUBLICATIONS

Address: Shop No.18, Al-Kareem Market,

Urdu Bazar, Lhr.

Tel : 042-37242421, 37141595
Cell : 0318-4598150, 0319-1588845
E-mail : alrazienterprises1@gmail.com
Youtube : success with Al-Razi Publications