

AL-RAZI AGAD ENIL Notes

Topical Short Questions

Solved Exercises

Copyright © Al-Razi Publications

All rights reserved. No part of this publication may be reproduced or transmitted in any form or by any means, electronic, mechanical, photocopying, recording, or otherwise, without prior written permission of the publisher. Any person or persons who do any unauthorized act in relation to this publication may be liable to criminal prosecution and civil claims for damages.

-*N*

	Chalow Matche (CM)		
Cnairman:	Ghulam Mujtaba (GM)		
<i>C.E.O:</i>	Malik Ahsan Azam		
Project Director:	Imran Safder		
Writer:	Mian Arif Ali (SST Science)		
Reviewed by:	Ahmed Naveed (SST Science)		
	Hafiz Muhammad Tahir Iqbal (SST Science)		
	Prof. Dr. Malik Muhammad Asghar Chan		
	(University of Education Lahore)		
	Prof. Hammad-ul-Rehman (M.Phil Chemistry)		
	Prof. Muhammad Rizwan (M.Phil Chemisty)		
	Chaudhry Allah Wasaya Anjum		
	(M.Phil Chemistry)		
	Muhammad Zaigham Mukhtar (SST Science)		
Designed by:	Umar Nawaz		

Welcome to the "Al-Razi Academic Notes on Chemistry" *Grade* 9. This comprehensive solution book is designed to support students, teachers and parents in navigating the exciting world of Chemistry.

Crafted with clarity and precision, this book provides detailed solutions to the exercises along with Topical MCQ's, Topical Short Answer Questions and Topically solved exercises in the Grade 9 syllabus, accompanied by conceptual insights and visual aids. More than just a compilation of answers, it aims to foster curiosity, deepen understanding, and build confidence in young learners. By bridging the gap between theoretical knowledge and practical application, this book aspires to inspire students to appreciate the profound role Chemistry plays in shaping the world around us. My heartfelt gratitude goes to the educators and students whose valuable feedback has guided this endeavor, and I welcome suggestions for continual improvement. May this book serve as a trusted companion on your academic journey and spark a lifelong interest in the wonders of Chemistry!

AL	-RAZI AGADEMIG NOTES	5	CHEMISTRY -9
	Chapter States of	f Matter	and
	Phas	e Change	25
	.1 What is Chemistry?		
	• Multiple Choice	Questions (MCQs)	•
1.	Which branch of chemistry d	eals with the strue	cture, composition,
	and properties of substances w	vithout carbon?	
	Organic Chemistry	Inorganic Ch	nemistry
	© Environmental Chemistry	D Physical Che	emistry
2.	The branch of chemistry that	studies carbon con	mpounds excluding
	carbonates, oxides, and carbid	es is called:	
	A Nuclear Chemistry	B Physical Che	emistry
	© Organic Chemistry	D Geochemistr	У
3.	Which branch of chemistry	helps in understa	nding life through
	chemical processes?		
	Biochemistry	B Medicinal C	hemistry
	© Polymer Chemistry	D Analytical C	Chemistry
4.	Radioactivity and reactions of	occurring in the n	uclei of atoms are
	studied in:		
	Polymer Chemistry	B Medicinal C	hemistry
	© Environmental Chemistry	D Nuclear Che	emistry
5.	Which branch of chemistry	is primarily co	ncerned with the
	analysis of substances?		
	Medicinal Chemistry	B Environment	tal Chemistry
	© Analytical Chemistry	D Astrochemis	try
6.	The study of chemical comp	osition and proce	esses occurring on
	Earth and its minerals is called	1:	
	(a) Geochemistry	B Astrochemis	try
	© Physical Chemistry	D Environment	tal Chemistry
7.	What does physical chemistry	primarily investig	ate?
	(a) Carbon compounds	B Chemical co	mposition of Earth
	© Interaction of molecules in s	bace	-
	Behavior of substances at atc	mic and molecular	levels

AL	-RAZI AGADEMIC NOTES	6 CHEMIS	TRY -9
8.	Medicinal Chemistry focuses	on:	
	Studying nuclear processes	B Analyzing chemical subst	tances
	© Designing and synthesizing	lrugs	
	D Investigating environmental	pollution	
9.	Which branch of chemistry	tudies the interaction of molec	cules in
	space?		
	Geochemistry	Astrochemistry	
	© Environmental Chemistry	D Nuclear Chemistry	
10.	Polymer Chemistry studies:		
	Properties and synthesis of	arge molecules	
	Properties of metals and no	metals	
	© Radioactive transformation		
	D Chemical reactions in living	organisms	
11.	The branch of chemistry th	t deals with environmental po	ollution
	and its solutions is:		
	Medicinal Chemistry	Analytical Chemistry	
	© Environmental Chemistry	D Nuclear Chemistry	
12.	In biochemistry, which mole	iles are studied?	
	Metals and nonmetals	B Hydrocarbons and salts	
	© Radioactive elements		
	Deroteins, carbohydrates, lip	ls, and nucleic acids	
13.	What is the focus of astroche	nistry?	
	Study of Earth's minerals	B Molecules and ions in spa	ace
	© Polymer synthesis	D Environmental reactions	
14.	Which of the following does	ot fall under inorganic chemist	ry?
	(a) Salts (b) Acids	© Bases D Hydroc	arbons
15.	The branch of chemistry th	at uses sophisticated instrum	ents to
	identify substances is:		
	Analytical Chemistry	Biochemistry	
4.6	© Medicinal Chemistry	Organic Chemistry	
16.	Which branch of chemistry	s essential for studying fertilize	ers and
	pigments?		
	Physical Chemistry	Polymer Chemistry	
	U Inorganic Chemistry	U Geochemistry	

7

CHEMISTRY -9

• Short Answered Questions

1. What is chemistry and what does it study?

Ans. Chemistry is the branch of science focused on the properties, composition, and structure of substances. It explores physical and chemical changes in matter and the principles that govern these changes.

2. Why are the branches of chemistry important?

Ans. The branches of chemistry allow scientists to specialize in distinct areas of study, making it easier to explore complex topics.

3. What is physical chemistry and its role?

Ans. Physical chemistry investigates the behavior of substances at atomic and molecular levels. It explains how physical laws affect atoms and molecules, enabling scientists to predict reaction rates and optimize industrial processes.

4. What is inorganic chemistry about?

Ans. Inorganic chemistry studies elements and compounds with little or no carbon, including metals, salts, acids, and bases. Its applications range from fertilizers to catalysts, making it vital in multiple industries.

5. What does organic chemistry study?

Ans. Organic chemistry focuses on carbon-containing compounds, including hydrocarbons and their derivatives. It examines their structure, properties, and reactions, which are essential for understanding life and creating various products.

6. How does environmental chemistry help?

Ans. Environmental chemistry studies chemical phenomena in air, water, and soil, analyzing human impacts on the environment. It helps identify pollution causes, effects, and solutions.

7. What is analytical chemistry used for?

Ans. Analytical chemistry involves identifying and quantifying substances in materials. Modern instruments are often used for precision, making it essential in quality control, research, and diagnostics.

8. What is biochemistry?

Ans. Biochemistry explores life at the molecular level by studying proteins, carbohydrates, lipids, and nucleic acids. It reveals vital processes in

organisms, bridging biology and chemistry for medical and scientific advancements.

9. What is nuclear chemistry?

Ans. Nuclear chemistry studies reactions in atomic nuclei, including radioactivity and nuclear processes. It has applications in energy production, medicine, agriculture, and research.

8

10. What is the significance of medicinal chemistry?

Ans. Medicinal chemistry focuses on designing and synthesizing drugs to improve health. It includes studying drug absorption, metabolism, and delivery to treat diseases effectively.

Interesting information!

☆ How does a geothermal heat pump heat and cool buildings?

Ans. Geothermal heat pump uses a pump to transfer underground water into the buildings during the winter to heat them and in the summer to cool them.

Exercise

A lunar mission has recently brought samples from the Moon. The following experiments were then carried out on it. Point out the branch of chemistry these experiments are related to:

	Experiment	Branch of Chemistry					
1.	Determining	This experiment falls under Analytical					
	its composition	Chemistry, which involves identifying and					
		quantifying the components in a sample, such as					
		determining the elements and compounds in the					
		lunar samples.					
2.	Studying the physical	This relates to Physical Chemistry, which					
	properties of materials,	, examines the physical properties and behavior of					
	it contains	substances at atomic and molecular levels, such					
		as studying the lunar materials' density, melting					
		points, and conductivity.					
3.	Carrying out chemical	This is related to Inorganic Chemistry, as it					
	reactions with usual	involves the study of the reactions, properties,					
	inorganic reagents	and structures of inorganic compounds found in					
		the lunar samples.					

CHEMISTRY

AL-	RAZI AGADEMIC	NOTES 9			CHEMISTRY -9
	2 States of M	latter			
	(M	Iultiple Choice Qu	iest	ions (MCQs	
17.	Matter is:				
	Anything that	t has mass and occ	upie	es volume	
	B Non-materia	l entities	C	Only gases a	and liquids
	D Anything that	t produces energy			
18.	The following i	s NOT a primary	stat	te of matter:	:
	(a) Solid	B Liquid	C	Plasma	D Graphene
19.	The state of ma	atter has particles	tha	t are very w	idely apart:
	(a) Solid	B Liquid	C	Gas	D Plasma
20.	Gases easily co	mpressible due to:	:		
	A Strong interr A	nolecular forces			
	B High density		C	Fixed shape	and volume
	D Weak interm	olecular forces and	wi	dely spaced j	particles
21.	What distingui	shes liquids from g	gase	es?	
	A Significant in	ntermolecular force	s ar	nd higher der	nsity
	B Definite shap	pe	C	Weak intern	nolecular forces
	D Random arra	ingement of particle	es		
22.	The state of n	natter has partic	eles	fixed in p	osition but able to
	oscillate is:				
	(A) Gas	B Solid	C	Plasma	D Liquid
23.	The state of ma	atter is most dense	an	d incompres	sible is:
	Liquid	^B Gas	C	Solid	D Plasma
24.	A type of soli	d has particles p	per	fectly arra	nged and strongly
	bonded is:		_		
	Crystalline s	olids	B	Amorphous	solids
	© Liquid crysta	als	(D)	Supercritica	l fluids
25.	Plasma is consi	dered a partially i	oni	zed gas beca	ause it contains:
	(A) Only neutral	atoms	B	Fixed partic	les
	© Molecules w	ith weak bonds	(D)	Electrons, io	ons, and photons
26.	Where can plas	sma be commonly	obs	served?	
	Water bodies	s and oceans	B	Solid surfac	es
	© Lightning an	d fluorescent tubes	D	Rocks and r	ninerals

AL	RAZI AGADEM	IC NOTES 1	.0	CHEMISTRY -9			
27.	The state of n	natter does NOT re	equire a containe	r to hold its shape is:?			
	A Liquid	B Solid	© Gas	D Plasma			
28.	The supercrit	tical fluids are:					
	States with both solid and liquid properties						
	Partially ionized gases Crystalline solids						
	D Highly con	npressed states with	h properties of ga	ses and liquids			
29.	The state of	matter composed	l of particles wi	th very high kinetic			
	energy is:						
	A Plasma	[®] Gas	C Liquid	D Solid			
30.	The property	common between	n gases and supe	rcritical fluids is:			
	A High densi	ty	B Fixed shap	e			
	© Weak inter	molecular forces	D Strong interpretenting	ermolecular forces			
31.	In which stat	e of matter do par	rticles move rand	domly but are closely			
	attached?						
	Solid Solid	B Liquid	C Gas	D Plasma			
32.	Why are soli	ds incompressible	?				
	Weak inter	molecular forces					
	B High kinet	ic energy	© Random m	ovement of particles			
	D Strong interpretenting	ratomic attractions	and closely pack	ted particles			
33.	The state of r	natter exists in flu	orescent tubes is	S:			
	(A) Gas	B Liquid	C Plasma	D Solid			
		Short Answered Q	Questions				

1. What is matter?

Ans. Matter is anything that carries weight and occupies space. Unlike energy, which is non-material, matter exists in various forms and surrounds us in everyday life.

2. What is a state of matter?

Ans. A state of matter refers to the distinct forms in which matter exists, such as solid, liquid, gas, and plasma. Beyond these, there are other states not commonly encountered in daily life.

3. How do solids differ from liquids and gases?

Ans. Solids have a fixed shape and volume, with particles closely packed and strongly bonded. Unlike gases and liquids, solids are incompressible and rigid due to their high density and strong intermolecular forces.

11

CHEMISTRY-9

4. What are the characteristics of gases?

Ans. Gases have particles widely spaced apart with weak intermolecular forces, making them easily compressible. Their low density and random particle movement distinguish them from solids and liquids.

5. How are liquids unique among the states of matter?

Ans. Liquids have closely attached particles with significant intermolecular forces, allowing random movement. They are not easily compressible, have higher densities than gases, and take the shape of their container.

6. What are crystalline solids?

Ans. Crystalline solids have a perfectly arranged particle structure and strong bonding, making them incompressible. Their high density and rigid structure are characteristic of this form of solid.

7. What is plasma, and where is it found?

Ans. Plasma is a high-energy state of matter composed of electrons, ions, and photons. It exists in phenomena like fluorescent tubes, lightning, and welding arcs, representing a partially ionized gas.

8. What are supercritical fluids?

Ans. Supercritical fluids are intermediate states of matter that exhibit properties of both gases and liquids. They are highly compressed and used in chemical reactions where conventional solvents fail.

9. What are liquid crystals?

Ans. Liquid crystals represent an intermediate state where liquid meets solid. They have unique properties, such as molecular alignment, making them useful in display technologies like LCDs.

10. How does matter exist beyond the primary states?

Ans. Beyond solids, liquids, gases, and plasma, matter can exist in exotic forms like supercritical fluids, liquid crystals, and graphene. These states showcase unique properties valuable in scientific and industrial applications.

1.3 Element, Compound and Mixture

• Multiple Choice Questions (MCQs) •

34. What is the simplest form of matter?

(a) Compound(b) Element(c) Mixture(c) Molecule

AL-	RAZI AGADEMI	C NOTES 1	12	CHEMISTRY -9			
35.	Is NOT a char	racteristic of an e	element:				
	Pure substat	nce containing the	e same kind of atom	S			
	Cannot be b	oroken down by cl	hemical reactions				
	© Composed	of two or more ele	ements				
	D Exists in so	lid, liquid, or gas	form				
36.	The form of n	natter is the most	abundant among	elements:			
	Solid	B Liquid	C Gas	D Plasma			
37.	The type of s	ubstance made u	p of two or more	different elements			
	combined in a fixed ratio is:						
	Mixture	B Element	© Isotope	D Compound			
38.	An example of	f a homogeneous	mixture:				
	(Air	B Milk	© Saltwater sol	ution D Soil			
39.	An example of	f a heterogeneous	s mixture:				
	(a) Tap water	B Rock	© Mineral acid	D Sugar solution			
40.	The following	is a compound:					
	Potassium	chloride C Gold	l 🖲 Oxygen	D Zinc			
41.	The two main	types of mixture	es are:				
	(a) Solid and li	quid	B Homogeneous	and heterogeneous			
	© Metallic and	d non-metallic	D Ionic and mole	ecular			
42.	The type of ele	ement exists as a	noble gas:				
	Sodium Sod	B Silicon	© Iron	D Helium			
43.	The following	is NOT a compo	und:				
	(a) Water	B Carbon dio	xide [©] Mercury	D Ammonia			
44.	An example of	f a molecular con	npound is:				
	(a) Water	B Sodium chl	oride [©] Granite	D Copper			
45.	The following	is a property of	mixtures:				
	Fixed ratio A	of components	B Difficult to s	eparate components			
	C Difficult to	separate compone	ents				
	D Component	s retain their indiv	vidual properties				
46.	An example of	f a metalloid is:	_	-			
	(a) Oxygen	B Silicon	© Gold	D Potassium			
47.	What makes	homogeneous mi	ixtures different fi	rom heterogeneous			
	mixtures?						
	(a) Heterogene	ous mixtures cons	ist of only one com	ponent			
	B Homogeneo	ous mixtures are a	lways solids				
	C Homogeneo	ous mixtures have	uniform composition	on throughout			
	D Heterogeneous mixtures are always liquids						

AL	-RAZI ACADEMIC NOTES	13	CHEMISTRY -9
48.	The artificial element c	reated in a laborator	y was:
	Technetium	Iron	
	© Copper	D Mercur	У
	• Short Ans	wered Questions	•

1. What is an element?

Ans. An element is the simplest form of matter, made up of only one kind of atom. It is a pure substance that cannot be broken down further by ordinary chemical reactions. Elements exist in solid, liquid, and gaseous forms, with solids being the most common.

2. What are examples of elements?

Ans. Examples of elements include metals like iron and gold, non-metals like oxygen and chlorine, and noble gases like helium. Elements can exist as atoms, molecules, ions, or isotopes.

3. What is a compound?

Ans. A compound is a pure substance formed by the chemical combination of two or more different elements in a fixed ratio. Compounds have unique properties and strong chemical bonds, making them difficult to separate into their elements.

4. What are examples of compounds?

Ans. Examples of compounds include water (H_2O) , carbon dioxide (CO_2) , sodium chloride (NaCl), and ammonia (NH₃). These compounds may be organic, inorganic, molecular, or ionic.

5. What is a mixture?

Ans. A mixture consists of two or more elements or compounds combined in any ratio without chemical bonding. Mixtures can be homogeneous, like saltwater, or heterogeneous, like a sample of rock.

6. How do mixtures differ from compounds?

Ans. Mixtures differ from compounds in that their components are not chemically bonded and can be separated by physical means. In contrast, compounds have fixed compositions and chemical bonds between elements.

7. What are homogeneous mixtures?

Ans. Homogeneous mixtures have uniform composition and properties throughout. An example is a saltwater solution.

14

CHEMISTRY-9

8. What are heterogeneous mixtures?

Ans. Heterogeneous mixtures have non-uniform composition, with different parts having varying concentrations. Examples include rocks and chocolate with visible inclusions.

9. What are artificial elements, and give an example?

Ans. Artificial elements are those created in laboratories rather than found in nature. An example is technetium, the first element synthesized by scientists.

10. How are elements classified?

Ans. Elements are classified as metals, non-metals, metalloids, or noble gases. Each group has distinct properties, with metals being conductive, non-metals non-conductive, metalloids having mixed properties, and noble gases being chemically inert.

Interesting information!

- \bigstar Which element was the first to be created by scientists in the laboratory?
- Ans. Many elements are found in nature but some are artificial. Technetium was first element created by scientists in the laboratory.

1.4 Allotropic Forms of Substances

• Multiple Choice Questions (MCQs) •

- 49. The phenomenon of elements existing in more than one structural form called:
 - (a) Isomerism (b) Allotropy
 - © Crystallization D Polymerization

50. The following are allotropic forms of oxygen:

- (a) Oxygen (O₂) and ozone (O₃) (b) Oxygen (O₂) and water (H₂O)
- C Carbon dioxide (CO₂) and ozone (O₃)
- D Oxygen (O₂) and carbon monoxide (CO)
- 51. The element exists in diamond, graphite, and Buckminster fullerene forms is:
 - Sulphur
 Dygen
 Carbon
 Ditrogen

52. The structure of diamond is:(a) Layered hexagonal rings(b) Spherical arrangement

- © Monoclinic crystalline structure D Giant macromolecular structure

AL-	RAZI AGADEMIC NOTES	15	CHEMISTRY -9
53.	The following is a characteris	stic (of graphite:
	(a) High electrical conductivity	r	B Low melting point
	© Cage-like structure		D Insoluble in organic solvents
54.	What makes Buckminster ful	llere	ne (C ₆₀) unique?
	(a) Giant structure with strong	cova	lent bonds
	B Spherical shape with no boundary	ında	ries or unpaired electrons
	© Solubility in water		D High electrical conductivity
55.	Is NOT a property of diamon	nd:	
	Hardness		B High melting point
	© Electrical conductivity		① Covalent bonding
56.	The allotrope of sulphur is m	ore	stable:
	A Monoclinic sulphur		B Amorphous sulphur
	© Liquid sulphur		Rhombic sulphur
57.	The structure of Buckminster	r ful	lerene (C ₆₀) is:
	(a) Cage-like spheres made of p	penta	agons and hexagons
	(B) Giant macromolecular struct	ture	
	© Hexagonal layers		Rhombic crystalline structure
58.	The allotrope of carbon is so	ft an	d cannot conduct electricity:
	Diamond		Buckminster fullerene
	© Graphite		① Graphene
59.	The property common betwe	en d	iamond and graphite is:
	(a) Hardness		B Electrical conductivity
	© Covalent bonding		③ Solubility in organic solvents
60.	The primary structural differ	ence	e between diamond and graphite is:
	(a) Diamond has a layered	stru	cture, and graphite has a giant
	macromolecular structure.		
	^(B) Diamond has a giant macro	omo	lecular structure, and graphite has a
	layered structure.		
	© Both are layered structures.		D Both have a cage-like structure.
61.	Which allotrope of sulphur h	as a	monoclinic crystalline structure?
	Rhombic sulphur		B Liquid sulphur
	© Amorphous sulphur		① Monoclinic sulphur
62.	The allotrope of carbon stable	e at l	high temperatures and pressures is:
	Buckminster fullerene		(B) Graphite
	© Diamond		① Amorphous carbon

CHEMISTRY -9

• Short Answered Questions

1. What is allotropy?

Ans. Allotropy is the phenomenon where elements exist in more than one structural form with distinct physical and chemical properties. Examples include oxygen existing as O_2 and O_3 (ozone).

2. What are the allotropic forms of oxygen?

Ans. Oxygen has two allotropic forms: oxygen (O_2) and ozone (O_3) . O_2 is essential for respiration, while O_3 is a triatomic molecule found in the ozone layer, protecting us from harmful UV radiation.

3. What are the three main allotropic forms of carbon?

Ans. Carbon exists as diamond, graphite, and Buckminster fullerene. Diamond has a rigid macromolecular structure, graphite has a layered hexagonal structure, and fullerene forms spherical molecules.

4. What is unique about Buckminster fullerene?

Ans. Buckminster fullerene (C_{60}) has a cage-like structure made of carbon atoms arranged in pentagons and hexagons. It is stable at high temperatures, soluble in organic solvents, and has unique properties like low melting point and non-conductivity.

5. How does diamond differ from graphite?

Ans. Diamond has a giant macromolecular structure with strong covalent bonds, making it extremely hard. In contrast, graphite has a layered structure, allowing its layers to slide, making it soft and a good conductor of electricity.

6. What are the crystalline forms of sulphur?

Ans. Sulphur exists in two crystalline allotropic forms: rhombic and monoclinic. Rhombic sulphur is more stable, while monoclinic sulphur exists under specific temperature conditions.

7. What is the structure of graphene?

Ans. Graphene is a single layer of carbon atoms arranged in a hexagonal lattice. It has remarkable properties, including high strength, excellent electrical conductivity, and transparency.

8. Why is graphite a good conductor of electricity?

Ans. Graphite's layered structure contains delocalized electrons that move freely, allowing it to conduct electricity. This property is absent in diamond due to its rigid covalent bonding.

17

CHEMISTRY -9

9. What are the uses of fullerenes?

Ans. Fullerenes are used in nanotechnology, medicine, and materials science due to their stability, unique structure, and ability to trap other molecules within their cage-like formation.

10. How do allotropes of the same element differ?

Ans. Allotropes differ in atomic arrangement and bonding, leading to distinct physical and chemical properties. For example, diamond is hard and non-conductive, while graphite is soft and conducts electricity.

1.5 Differences between Elements, Compounds and Mixtures

• Multiple Choice Questions (MCQs) •

63. An element is:						
	A mixture of compounds	The simplest form of matter				
	© A combination of molecules	D A homogeneous mixture				
64. The elements exist as diatomic molecules in the		nolecules in their gaseous state are:				
	Oxygen and nitrogen	B Sodium and potassium				
	© Helium and argon	① Calcium and magnesium				
65.	A compound is:					
	A heterogeneous mixture	An impure element				
	© A suspension of particles					
	D A pure substance with a fixed	ratio of elements				
66.	The following is an example of a	compound:				
	(a) Sodium (b) Air	© Water D Iron				
67.	In a compound, the elements are combined in a:					
	④ Fixed ratio by weight	B Random ratio by volume				
	© Variable ratio by weight	D Fixed ratio by volume				
68.	What distinguishes a mixture fr	om a compound?				
	Mixtures are chemically bonded.					
	Mixtures can be separated by physical methods.					
	© Mixtures have a fixed composition.					
	D Mixtures have uniform propert	ies.				
69.	An example of a homogeneous r	nixture:				
	Sand and iron filings	Oil and water				
	© Salt dissolved in water	① A sample of rock				

9. What is the behavior of copper sulphate and sodium nitrate with temperature?

27

Ans. The solubilities of copper sulphate and sodium nitrate increase as temperature rises, making them examples of typical solubility behavior for many solids.

10. Why is calcium hydroxide an exception?

Ans. Calcium hydroxide shows decreased solubility with rising temperature. This behavior is unique and contrasts with the general trend of solids becoming more soluble as temperature increases.

Activity

☆ Take 100 g of water in a beaker and prepare saturated solution of sugar at room temperature. Heat the beaker on a spirit lamp. Add a little more sugar in it and stir it. Will this sugar be dissolved in it? You will notice that by heating the solution

CHEMISTRY

the quantity of sugar dissolved in water has increased i.e. the solubility of sugar has increased.

Ans. Activity (Effect of Temperature on Solubility): When sugar is added to water at room temperature, it dissolves until the solution becomes saturated. Upon heating the solution, the solubility of sugar increases, allowing more sugar to dissolve. This demonstrates how temperature can enhance the dissolving capacity of a solvent.

Exercise

- ☆ How variation of solubility at different temperatures can be useful for us?
- Ans. Variation in solubility with temperature has practical applications in multiple areas:
- 1. **Purification of Solids:** Solids that increase in solubility with temperature can be purified through crystallization. Impurities remain dissolved when the solution is cooled, allowing pure crystals to form.
- 2. Preservation of Gases in Liquids: Solubility of gases decreases with increasing temperature. For example, soda bottles are kept in refrigerators to maintain the solubility of carbon dioxide, ensuring it stays dissolved for longer.
- **3.** Chemical Reactions Optimization: Temperature-dependent solubility is crucial in industries to optimize reactions, especially for dissolving reactants or removing precipitates efficiently.

28

CHEMISTRY -9

Intersting Information!

- ☆ How does increasing temperature affect the solubility of solids in liquids?
- **Ans.** The increase in the solubility of solids in liquids with increase in temperature may be used to purify them. Pure solids commonly appear as beautifully shaped crystals.

\bigstar Why are soda water bottles stored in the refrigerator?

1100

Ans. Generally the solubility of gases decreases with increase in temperature. Carbon dioxide gas is more soluble in water at low temperature. Soda water bottles are thus stored in the refrigerator to keep carbon dioxide gas dissolved in water for a longer period of time.

		MCQs KEY							
1	B	2	C	3	A	4	D	5	C
6	A	7	D	8	C	9	B	10	A
11	C	12	D	13	B	14	D	15	A
16	C	17	A	18	D	19	C	20	D
21	A	22	B	23	C	24	A	25	D
26	C	27	B	28	D	29	A	30	C
31	B	32	D	33	C	34	B	35	C
36	A	37	D	38	C	39	B	40	A
41	B	42	D	43	C	44	A	45	D
46	B	47	C	48	A	49	₿	50	A
51	C	52	D	53	A	54	B	55	C
56	D	57	A	58	B	59	C	60	B
61		62	A	63	B	64	A	65	D
66	C	67	A	68	B	69	C	70	D
71	B	72	A	73	C	74	Ð	75	B
76	A	77	C	78	Ð	79	₿	80	9
81	B	82	D	83	C	84	Ð	85	B
86	Ð	87	A	88	₿	89	C	90	Ð
91	A	92	B	93	©	94	Ð	95	A
96	0	97	1	98	A	99	B	100	C
101	1	102	B	103	A	104	C	105	1
106	B	107		108	B	109	1	110	C

AL-	RAZI AGADEM	IC NOTES	29		CHEMISTRY -9
		CO	ХE	RCISE)
1.	Tick (\checkmark) the	correct answer	•		
(i)	Matter is pre	sent in neon sigr	ns in tl	ne state of:	
	Supercritic	al fluid	Œ	🕽 Plasma	
	C Gas		(I	Liquid crys	tal
(ii)	Hazardous ef	fects of shopping	g bags	are studied	in:
	Geochemistry B Inorganic chemistry				
	C Analytical	Chemistry	(I	Environmer	ntal chemistry
(iii)	The man-mae	de polymer is:			
	(A) Starch	Polystyrer	ne () Protein	D Cellulose
(iv)	The crystals of	of which substan	ice hav	ve a rhombic	shape?
	(A) Brass	(B) Sulphur	((Graphite	(D) Bronze
(v)	Which liquid	among the follo	wing i	s a colloidal	solution?
	(a) Milk		(H	Slaked lime	used for white wash
	Vinegar so	lution	્ય	Mixture of	AgCI in water
(VI)	Which of the	following is a he	eterog	enous mixtur	:e?
	A solution	of calcium hydro	xide il	1 water	
	A solution	of potassium nu	ate m	Waler Concrete m	ivturo
(vii)	A state of ma	ale tter whose prop	ortios	are hetween	those of liquids and
(11)	A state of ma	lide.	ei ties		those of fiquids and
	A Liquid crys	stal B Supercriti	cal flu	id 🛈 Plasm	a Dark matter
(viii)	When the tim	v visible particle	s of a	substance ar	e dispersed through
(,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	a medium. th	e mixture is nan	ned as	•	e anspersea and ange
	True soluti	on B Colloid	© 9	Suspension	D Saturated solution
(ix)	A solution of	KClO ₃ has a se	olubili	ty of about 1	13.2g per 100cm ³ at
	40°C. How its	solubility will be	affecte	d, if you decre	ease the temperature?
	(A) The solubil	lity will increase	Œ	The solubility	ity will decrease
	C The solubi	lity will remain th	ne sam	e	
	D The solubi	lity will first inc	rease	with tempera	ture and then it will
	decrease				
(x)	You are stud	lying the rate of	f hydi	olysis of sta	rch under different
	conditions of	temperature. In	h whic	h branch of	chemistry this topic
	will fall?		-		
	(a) Organic Cl	nemistry	Œ	Analytical	Chemistry
	C Biochemist	try	(I	Physical Ch	nemistry

AL-	Razi III	DEMIC N	OTES		30					CHEMISTRY	-9
			MCQs KEY			Y	7				
i B ii D iii B iv B v A vi D vii A viii B ix B x C											
2.	2. Questions for Short Answers										
i.	Why is the	Why is there a need to divide Chemistry into many branches. Give									
	three rea	hree reasons.									
Ans.	Chemistry is divided into branches to:										
${\simeq}$	Focus on	Focus on specific aspects of its vast and complex field.									
${\simeq}$	Address	interdis	sciplina	ry o	challe	enge	es i	like the	ose i	in biochemistry	or or
	environm	ronmental chemistry.									
☆	Enhance	scientifi	ic advaı	ncen	nents	by	spe	ecializir	ng ir	n areas like nuc	lear
	chemistry	or anal	lytical c	hem	nistry.						
ii.	Reaction	ns may	take p	lac	e due	e to	el	ectron	s pr	esent outside	the
	nucleus o	or they	may ta	ke p	olace	insi	de	the nu	cleu	s. Which branc	hes
	of Chemi	istry co	ver thes	se tv	vo typ	pes (of	reactio	ns.		
Ans.	☆ Reac	tions in	volving	ele	ectron	s ou	uts	ide the	nuc	leus are studied	1 in
	Physical (Chemistry and Inorganic Chemistry.									
র্ম	Reactions	s involving changes inside the nucleus are studied in Nuclear									
	Chemistry	hemistry.									
iii.	What types of problems are solved in analytical chemistry?										
Ans.	Analytic	Analytical chemistry addresses problems like determining the									
	composition of substances, identifying unknown compounds, and										
	measurin	asuring the concentration of elements or compounds in mixtures									
	using advanced techniques.										
iv.	Both graphite and graphene have hexagonal layered structures.										
What is the difference?											
Ans.											
A	Aspect		Grapi	iite					Gr	apnene	
Structure		Made	up of	lag	yers	of	Ma	ade up	of	a single layer	of
		hexago	onal ring	gs of	f carb	on	he	xagonal	ring	s of carbon ator	ns.
		atoms.									
Th	ickness	Comp	osed o	f n	nultip	ple	Co	ompose	d of	One single la	yer
		layers s	stacked	toge	ether.	((m	onolaye	er).		
Con	ductivity	Good	cond	uc	tor	of	Ex	cellent	cond	luctor of electric	city

electricity due to free due to strong bonding and free

electrons between layers. electrons within the layer.

AL-RAZI 10	DEMIC NOTES 31	CHEMISTRY -9
Strength	Relatively soft and slippery because of weak	Extremely strong due to strong covalent bonding between
	forces between layers.	carbon atoms in the layer.
Flexibility	Not flexible as it consists	Flexible and can be bent without
	of many layers.	breaking.
Use	Used in pencils,	Used in flexible electronics,
	lubricants, and batteries.	supercapacitors, and advanced
		materials.

v. Why are supercritical fluids important?

Ans. Supercritical fluids, like supercritical carbon dioxide, combine the properties of gases and liquids. They are widely used in industrial processes like extraction, cleaning, and chemical reactions due to their efficiency and eco-friendliness.

vi. In which state does matter exist in the Sun?

Ans. Matter in the Sun exists in the Plasma state, a high-energy state where electrons are separated from nuclei, creating a soup of charged particles.

vii. What is the importance of graphene?

- **Ans.** Graphene is incredibly strong, lightweight, and an excellent conductor of heat and electricity. Its properties make it highly valuable in electronics, material science, and energy storage applications.
- viii. Which form of matter do most of the material things in this world belong to?
- **Ans.** Most material things in the world belong to the Solid state, characterized by fixed shapes, strong intermolecular forces, and high density.

3. Constructed Response Questions

i. How does a supercritical state look like?

Ans. In a supercritical state, a substance exists where the distinctions between liquid and gas disappear. It appears as a dense gas with liquid-like properties, filling a container uniformly without any phase separation.

ii. In what way is plasma created in a flourescent tube?

Ans. Plasma in a fluorescent tube is created by ionizing a gas, such as argon or neon, using an electrical current. This ionization produces a mixture of charged particles (ions and electrons) that emit light when recombining.

32

- CHEMISTRY -9
- iii. Most of the molecules we study in biochemistry are organic in nature. Where does the difference exists in organic and biochemistry branches of Chemistry.
- **Ans.** Organic chemistry focuses on the structure, properties, and reactions of carbon-containing compounds. Biochemistry, however, specifically studies organic molecules and processes occurring within living organisms, such as proteins, enzymes, and DNA.
- iv. Give the reason of brilliance shown by diamond. Can you improve it?
- **Ans.** The brilliance of a diamond is due to its high refractive index and the way it disperses light. It can be enhanced by precise cutting techniques that maximize internal reflection and dispersion.

v. Explain the dissolution of sodium chloride in water.

- **Ans.** Sodium chloride dissolves in water as its ions, Na⁺ and Cl⁻, separate due to the polar nature of water molecules. Water molecules surround and stabilize the ions, breaking the ionic lattice and forming a homogeneous solution.
- vi. Why do different compounds have different solubilities in water at a particular temperature?
- **Ans.** Different compounds have different solubilities in water at a particular temperature due to variations in their chemical properties, including the strength of intermolecular forces between the solute and solvent molecules. Factors like polarity, hydrogen bonding, ionic nature, and molecular size affect how well a compound dissolves in water. For example, polar and ionic compounds dissolve well in water due to strong interactions with water's polar molecules, while nonpolar compounds do not.

vii. Why NaCl can be crystallized from water just like KNO₃?

- **Ans.** NaCl can be crystallized from water just like KNO_3 because both salts dissolve in water and form a saturated solution at a certain temperature. When the temperature of the solution is lowered or water is evaporated, the solubility of the salt decreases, causing the ions to recombine and form solid crystals.
- viii. Why graphite is slippery to touch? Which property of graphite enables it to be used as lubricant?
- Ans. Graphite is slippery to touch because its structure consists of layers of carbon atoms arranged in a hexagonal lattice. These layers are held

33

CHEMISTRY-9

together by weak van der Waals forces, which allow them to slide over each other easily. This property makes graphite an excellent lubricant, as it reduces friction between surfaces.

4. Descriptive Questions

- i. Mention the name of the branch of Chemistry in which you will study each of the following topics.
 - (a) Rate of a reaction

(b) Digestion of food in human body

- (c) Properties of plasma (d) Ecosystem
- (e) Reactions taking place during fire works
- (f) Measurement of the absorption of wavelength with the help of ultraviolet spectrometer

Physical Chemistry

Ans. (a) Rate of a reaction:

- (b) Digestion of food in the human body: Biochemistry
 (c) Properties of plasma: Astrochemistry
 (d) Ecosystem: Environmental Chemistry
 (e) Reactions taking place during fireworks: Inorganic Chemistry
 (f) Measurement of the absorption of wavelength with the help of
- ultraviolet spectrometer: Analytical Chemistry
- ii. What are allotropic forms? Explain the allotropic forms of carbon and sulphur. How does coal differ from diamond?

Element	Allotropic Forms	Properties
		Giant macromolecular structure
	Diamond	(hard, transparent, high density)
Carbon	Graphite	Layered hexagonal structure (soft,
		conducts electricity)
	Buckminsterfullerene (C_{60})	Spherical structure (soft, low
		melting point)
Sulphur	Rhombic Sulphur	Stable crystalline form
	Monoclinic Sulphur	Less stable crystalline form
	Coal	Amorphous structure, less durable,
Coal vs		lower density
Diamond	Diamond	Crystalline structure, very hard, high
		density

Ans. Here is the information in a three-column tabular format:

34

CHEMISTRY -9

iii. What are supercritical fluids. How are they different from ordinary liquids?

Ans. Supercritical fluids are substances at a temperature and pressure above their critical point, where liquid and gas phases coexist without distinction. Unlike ordinary liquids, they have gas-like diffusivity and liquid-like density, making them ideal for processes like extraction and reaction.

Aspect	Supercritical Fluids	Ordinary Liquids
Definition	Substances above their critical	Substances with a clear
	point with no distinct liquid or	distinction between liquid
	gas phases.	and gas phases.
Phase	Exhibits properties of both	Has a definite shape and
Characteristics	gases and liquids (flows like	volume, with a clear phase
	gas, dense like liquid).	separation from gas.
Density and	Density similar to liquids, but	Density is fixed and does
Behavior	can diffuse through solids like	not change like in
	gases.	supercritical fluids.
Usage	Used for processes like	Typically used for
	supercritical fluid extraction,	processes where phase
	where high temperatures are	separation is maintained.
	avoided.	
Example	Carbon dioxide at high	Water, oil, and alcohol
	temperature and pressure.	under normal conditions.

iv. Define solubility of a solute. How does the solubility of solutes change with the increase in temperature?

- **Ans.** Solubility of a Solute: Solubility is defined as the maximum amount of solute that can dissolve in a given amount of solvent at a specific temperature to form a stable solution. It is generally expressed in terms of grams of solute per 100 grams of solvent or in molarity. Solubility of solutes usually increases with increase in temperature.
- v. What types of movements are present in gaseous and liquid molecules?
- **Ans.** In gaseous molecules, the particles are in constant, random motion. They move freely and rapidly in all directions, with a wide range of speeds, due to the weak intermolecular forces between them. This movement causes gases to expand and fill the container they are in, and they are highly compressible.

35

CHEMISTRY -9

In liquid molecules, the particles are closer together than in gases but still move randomly. They have more freedom of movement compared to solids but less than gases. The intermolecular forces are stronger than in gases, which keeps the molecules together, allowing liquids to maintain a definite volume, though they can flow and take the shape of their container.

vi. Differentiate between the areas which are studied under inorganic and organic chemistry.

Ans.

Aspect	Inorganic Chemistry	Organic Chemistry
Scope	Studies elements and	Focuses on carbon-containing
	compounds that contain little	compounds, especially
	or no carbon, including	hydrocarbons and their
	metals, nonmetals, salts, acids,	derivatives (excluding simple
	and bases.	salts like carbonates,
		bicarbonates, oxides, and
		carbides).
Examples of	Salts, acids, bases, metals,	Methane, proteins,
Compounds	nonmetals (e.g., sodium	carbohydrates, lipids, and
	chloride, potassium nitrate).	natural polymers.
Key Focus	Chemical synthesis,	Study of the structure,
	composition, properties, and	formation, properties, and
	structure of elements and	reactions of carbon
	compounds.	compounds.
Applications	Used in industries like	Central to life sciences,
	fertilizers, catalysts, pigments,	pharmaceuticals, agriculture,
	and coatings.	and petrochemical industries.
5 T	ation Orantiana	

- 5. Investigative Questions
- i. Preparation of solutions leads to an important process in chemistry which enables us to purify a compound through crystalization. Describe a process in which potassium nitrate is purified by crystallizing it in water.

Ans. To purify potassium nitrate (KNO₃) through crystallization, follow these steps:

1. Dissolution: First, dissolve impure potassium nitrate in hot water. The solubility of potassium nitrate increases with temperature, so heating the water allows more of the compound to dissolve.

2. Filtration: After dissolving the potassium nitrate, filter the solution to

36

CHEMISTRY -9

remove any insoluble impurities. This step ensures that only the dissolved potassium nitrate remains in the solution.

3. Cooling: Gradually cool the filtered solution. As the solution cools, the solubility of potassium nitrate decreases, causing it to crystallize.

4. Crystallization: Once the solution reaches a lower temperature, potassium nitrate begins to form crystals. The pure potassium nitrate will crystallize out of the solution, while the remaining impurities will stay dissolved in the water.

5. Separation: After sufficient crystallization, filter the crystals from the solution to separate the pure potassium nitrate. The crystals are then dried, leaving behind pure potassium nitrate.

This process of crystallization helps in purifying potassium nitrate by removing soluble impurities and obtaining it in its pure crystalline form.

ii. Graphene is called a miracle material and it is the material of the future. Which of its many properties makes it very useful in electronics?

Ans. Properties of Graphene that Make It Useful in Electronics:

Graphene is considered a miracle material due to its remarkable properties that make it extremely useful in electronics:

1. High Electrical Conductivity: Graphene is an excellent conductor of electricity, which makes it ideal for use in electronic components such as transistors, sensors, and conductors in flexible electronics.

2. High Thermal Conductivity: It efficiently conducts heat, which is beneficial for dissipating heat in electronic devices, especially in high-performance chips and circuits.

3. Strength and Flexibility: Despite being extremely thin, graphene is incredibly strong and flexible, allowing it to be used in bendable or stretchable electronic devices without compromising durability.

4. Thinness and Lightness: Graphene is a single layer of carbon atoms, making it the thinnest material known. This property is crucial for creating ultra-thin and lightweight electronic devices such as flexible screens and lightweight batteries.

5. High Surface Area: The large surface area of graphene allows for more efficient use in applications such as supercapacitors and batteries, enabling better energy storage and faster charging.

These exceptional properties make graphene an attractive material forthe development of next-generation electronic devices, from flexibleelectronics to energy-efficient systems. $\bigstar \bigstar \bigstar \bigstar \bigstar$

SHOP NO. 18, AI-Kareem Market, Urdu Bazar Lah 042-37242421 1 0318-4598150 alrazienterprises1@gmail.com

())

@